
131890-S Optimization methods Winter 2024/2025

Lecture 1: Introduction to analytical optimization
Daniel Kaszyński

Organisation

• Instructor: mgr Daniel Kaszyński, dkaszy[@]sgh.waw.pl

• Consultation: Monday 15:20-16:40, G-206.

• Course grading: A written exam on the content presented in class or included in the materials

Example task: Describe method XYZ, show differences between ABC and XYZ, solve an analytical
optimization task, carry out two iterations of the XYZ method

• Required literature:

– [KW19] Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. Mit Press.

– [CZ04] Chong, E.K. and Zak, S.H., 2004. An introduction to optimization. John Wiley & Sons.

– [SS08] Sydsæter, K., Hammond, P., Seierstad, A. and Strom, A., 2008. Further mathematics for
economic analysis. Pearson education.

– [CO14] Cortez, P., 2014. Modern optimization with R. New York: Springer.

1.1 Definition of extremum

Extremum is the central concept concerning the analytical optimization problem. The extremum x∗ is
the solution of the evaluation function f for which x∗ generates ’the best’ solution. Let’s consider a function
of one variable mapping from real to real values f : R→ R.

Definition 1: Local extremum

By a local extremum (type minimum) we will call a point x∗ for which:

∃ d > 0 ∀ 0 < |δ| < |d| ⇒ f(x∗ + δ) ≥ f(x∗) (1.1)

Definition 2: Global extremum

By a global extremum (type minimum) we will call a point x∗ for which:

∀ d > 0 ∀ |δ| > 0 ⇒ f(x∗ + δ) > f(x∗) (1.2)

1-1

1-2 MO Lecture 1: Introduction to analytical optimization

Figure 1.1: Local extremum of a function f : R→ R

Notice that the difference between a local and global extremum is the area in which we obtain better solution
(from the point of view of the evaluation function). In case of a local extrema, we can point a neighborhood
around xmin in which we obtain worse solutions. The neighborhood for xmin might be very small, where as
for a global extremum x∗

min it’s any neighborhood around an extremum.

1.2 Non-linear optimization without constraints in 1D. f : R→ R

The basic definition related to the non-linear optimization are related to the definition of derivative of
a function.

Definition 3: Derivative of a function

By a derivative of a function f : R→ R we call a function:

f ′(x) =
df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x)− f(x− h)

h
(1.3)

Example 1. Let f(x) = x2 + 2x. Calculate derivative of a function at the point x0 = 2 from
the definition:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 + 2(x+ h)− x2 − 2x

h
= (1.4)

= lim
h→0

x2 + 2xh+ h2 + 2x+ 2h− x2 − 2x

h
= lim

h→0

2xh+ h2 + 2h

h
= (1.5)

= lim
h→0

2x+ h+ 2 = 2x+ 2 (1.6)

f ′(2) = 2× 2 + 2 = 6 (1.7)

Continuity of a function f is a necessary condition for a function to be differentiable!

MO Lecture 1: Introduction to analytical optimization 1-3

In an analogous way we can describe the second derivative of a function:

f ′′(x) =
d2f

dx2
(x) = (f ′(x))′ = lim

h→0

f ′(x+ h)− f ′(x)

h
= lim

h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
(1.8)

1.2.1 First Order Conditions f : R→ R

Theorem 1: First Order Conditions f : R→ R.
Let f : D ⊂ R→ R, f ∈ C1. If a function f has an extremum at the point x ∈ D, then f ′(x) = 0.

Proof. If a function f has a minimum extremum at the point x, then there must exist |d| > 0,
such that for all 0 < |δ| < |d|, we have f(x + δ) > f(x), or f(x + δ) − f(x) > 0. Dividing both
sides by a δ we obtain:

for δ > 0
f(x+ δ)− f(x)

δ
> 0 ∧ for δ < 0

f(x+ δ)− f(x)

δ
< 0

for δ > 0 i δ < 0. Respectively at the limit δ → 0+ i δ → 0− we have:

lim
δ→0+

f(x+ δ)− f(x)

δ
= f ′

+(x) ≥ 0 ∧ lim
δ→0−

f(x+ δ)− f(x)

δ
= f ′

−(x) ≤ 0

If a function f is differentiable then f ′(x) = f ′
+(x) = f ′

−(x) = 0.

First Order Conditions give us a way to filter solutions from the search space, to those where the first
derivative of a function is equal to zero (stationary points).

Caution! Just because a derivative of a function at the point x is equal to zero, doesn’t mean that it is
an extremum. For an example consider functions f(x) = x2 and f(x) = x3.

1.2.2 Taylor’s Theorem f : R→ R

We will now introduce one of the most important theorem of mathematical analysis. The Fundamental
theorem of calculus states following:

Theorem 2: Fundamental theorem of calculus.∫ b

a

f(x) dx = F (b)− F (a) (1.9)

where F (x) is an anti-derivative or indefinite integral at point X. It means that the area under the curve
of a function f between points a and b we have to calculate: (1) the area under the curve from −∞ to b,
(2) the area under the curve from −∞ to a, (3) subtracting these values. Intuition behind equation (1.9)
is shown on Figure 1.2.

To simplify symbols let us assume that
∫
f ′(x) dx = f(x), then we can rewrite (1.9) as:

1-4 MO Lecture 1: Introduction to analytical optimization

𝑥𝑏𝑎

𝑓(𝑥)

Figure 1.2: Definite integral

f(b)− f(a) =

∫ b

a

f ′(x) dx (1.10)

Moving forward we will use symbols a = x b = x+h. We use point a as a starting point (or reference point),
and point b as an offset by h from a. Notice that if we set h = 0 and start increasing it, then equation (1.10)
answers the question by how much the area under the function f increases.

f(x+ h)− f(x) =

∫ x+h

x

f ′(a) da

By rearranging this equation and bringing the indefinite integral to the beginning of a coordinate system (as
for now it was attached at the point x) we obtain:

f(x+ h) = f(x) +

∫ h

0

f ′(x+ a) da (1.11)

The equation (1.11) is important from the perspective of further transformations. We can see that x is
interpreted as a constant value (as the integral is on a). Also, the left side of the equation is in the similar
form of a function inside the integral. Let’s try to express the integral in terms of equation (1.11):

f(x+ h) = f(x) +

∫ h

0

[
f ′(x) +

∫ a

0

f ′′(x+ b)db

]
da

Using the addition property of an integral:

f(x+ h) = f(x) +

∫ h

0

f ′(x)da+

∫ h

0

[∫ a

0

f ′′(x+ b)db

]
da

MO Lecture 1: Introduction to analytical optimization 1-5

We can try to express the first integral in the following form:

∫ h

0

f ′(x)da = [f ′(x)a]
h
0 = f ′(x)h

Which gives us:

f(x+ h) = f(x) + f ′(x)h+

∫ h

0

∫ a

0

f ′′(x+ b)db da

The expression inside the double integral we can also express using the previously noticed property:

f(x+ h) = f(x) + f ′(x)h+

∫ h

0

∫ a

0

f ′′(x) +

[∫ b

0

f ′′(x+ c)dc

]
db da

The inside of the double integral can be written as:∫ h

0

∫ a

0

f ′′(x)db da =

∫ h

0

[f ′′(x)b]
a
0 da =

∫ h

0

f ′′(x)a da =

∫ h

0

[
1

2
f ′′(x)a2

]h
0

=
1

2
f ′′(x)h2

Introducing this equation we obtain:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

∫ h

0

∫ a

0

∫ b

0

f ′′(x+ c)dc db da

The equation inside the integral is always worked out of equation 1.11. Such procedure can be performed
indefinitely (technically as many times as the function f is differentiable). In general this equation is given
as:

f(x+ h) =

∞∑
n=0

f (n)(x)

n!
hn (1.12)

The equation (1.12) is called as a Taylor’s equation. Notice that in practice we usually won’t differentiate
f infinitely many times. We will do it only few times that satisfies us with its accuracy. Thus we can write
out N -th expansions of a function using Taylor’s equation:

f(x+ h) = f(x) +

N−1∑
n=1

1

n!
f (n)(x)hn +

f (N)(x+ θh)

N !
hN (1.13)

where RN (x, h) = f(N)(x+θh)
N ! hN is the Lagrange remainder. We can show that, this remainder has the fol-

lowing property:

lim
h→0

RN (x, h)

hN
= 0

Which means that the remainder RN (x, h) of approximation using Taylor’s equation decreases to 0 at a rate
faster than the polynomial of N -th order.

1-6 MO Lecture 1: Introduction to analytical optimization

Theorem 3: Taylor’s equation f : R→ R.
Let f : D ⊂ R→ R and f ∈ CN at every point of the segment [x, x+ h]. Then for some θ we have:

f(x+ h) = f(x) +

N−1∑
n=1

1

n!
f (n)(x)hn +

f (N)(x+ θh)

(N)!
hN

Taylor’s theorem is an important result that is often used in practice!

Expansion of a function using a Taylor’s series of 1st and 2nd order:

f(x+ h) ≈ f(x) + f ′(x)h+
1

2
f ′′(x)h2

Example 2. Expand function f(x) = sinx using Taylor’s series around point x0 = 0.

Compute the derivatives of a function:

(sinx)′ = cosx

(sinx)′′ = − sinx

(sinx)′′′ = − cosx

(sinx)(4) = sinx

For higher order derivatives this pattern continues, now evaluate derivatives at 0

sin 0 = 0

(sin 0)′ = 1

(sin 0)′′ = 0

(sin 0)′′′ = −1
(sin 0)(4) = 0

Using Taylor’s formula we have:

sin(x) = 0 + 1x− 0x2 +
−1
3!

x3 + 0x4 + . . .

= x− x3

3!
+

x5

5!
− x7

7!
+ . . .

Using programming language R we can expand a function f(x) = x2

ex into a Taylor’s series of 1st and 2nd
order:

1 # Input data

2 f <- function(x) x^2/exp(x)

3 x0 <- 2.5

4 h_seq <- seq(0, 10, length = 100)

5

6 # Numerical derivatives

7 d1f <- function(f, x, h = 10^-6) (f(x+h)-f(x))/h

MO Lecture 1: Introduction to analytical optimization 1-7

8 d2f <- function(f, x, h = 10^-6) (f(x+2*h) -2*f(x+h)+f(x))/h^2

9

10 # Taylor approximation of function f around x0

11 taylor_1 <- function(f, x, h) f(x)+d1f(f, x)*(h-x)

12 taylor_2 <- function(f, x, h) f(x)+d1f(f, x)*(h-x)+1/2*d2f(f, x)*(h-x)^2

13

14 # Plots

15 plot(h_seq , f(h_seq), type=’l’, col=’black ’, xlab = ’x’, ylab = ’y’)

16 lines(h_seq , taylor_1(f, x0, h_seq), col=’red’)

17 lines(h_seq , taylor_2(f, x0, h_seq), col=’blue’)

18 legend (7.8, 0.55, legend=c(’f(x)’, ’taylor_1’, ’taylor_2’),

19 col=c(’black ’, ’red’, ’blue’), lty=1, cex=1)

Listing 1: Example: expanding function into a Taylor’s series

Figure 1.3: Example: expanding function into a Taylor’s series

1.2.3 Second Order Conditions f : R→ R

We showed earlier that First Order Conditions are the required (each extremum has such property), but not
enough (points that are not extremas, but have such property). To if a stationary point has an extremum
we will use sufficient conditions – Second Order Conditions.

Theorem 4: Second Order Conditions f : R→ R.
Let f : D ⊂ R → R, f ∈ Cn. If for some x ∈ D we get: f ′(x) = 0, f ′′(x) = 0, . . . , f (n−1)(x) = 0, but for
f (n)(x) ̸= 0, then:

1. If n is even, then function f has an extremum at the point x; If f (n)(x) > 0 then it is a minimum,
if f (n)(x) < 0 then it is a maximum.

1-8 MO Lecture 1: Introduction to analytical optimization

2. If n is odd, then function f doesn’t have an extremum at the point x.

Proof. From the Taylor’s equation, for some 0 < θ < 1 we have:

f(x+ h) =

n−1∑
k=0

1

k!
f (k)(x)hk +

1

(n)!
f (n)(x+ θh)h(n)

because f ′(x) = 0, f ′′(x) = 0, . . . , f (n−1)(x) = 0 then:

f(x+ h) = f(x) +
1

n!
f (n)(x+ θh)hn

f(x+ h)− f(x) =
1

n!
f (n)(x+ θh)hn

When n is even and f (n)(x) > 0 then due to parity of n we have hn > 0. Due to continuity of
the function f (n) at the point x we know that for some δ > 0 such, that for each h : 0 < |h| < δ
we have f (n)(x+ h) > 0, due to that f (n)(x+ θh) > 0. What it means is that a function f has
in this point x a minimum. We can show analogously the maximum case.

1.3 Non-linear optimization without constraints, multivariate case,
f : Rn → R

In the previous section we showed the optimization conditions in a one dimensional case – one decision
variable. However, the nature of optimization problems is more complicated and is multivariate.

We first have to introduce some basic terms from the area of differential calculus related to multiple variables.
We recommended to get familiar with early chapters of a textbook [BI86].

Definition 4: Directional derivative

Let f : D ⊂ Rn → R, x ∈ D and h ∈ Rn : x+h ∈ D. Directional derivative of a function f at the point
x in direction h we call the function:

df

dh
(x) = lim

t→0

f(x+ th)− f(x)

t

Definition 5: Partial derivative

Let f : D ⊂ Rn → R, x ∈ D and h ∈ Rn : x+h ∈ D. Partial derivative of f at the point x with respect
to variable xi, i = 1, 2, . . . n we call the function:

∂f

∂xi
(x) =

df

dei
(x)

where ei is the i-th versor of space Rn. Partial derivative of f with respect to xi is then a directional
derivative of f in direction of i-th versor, meaning that h = ei.

MO Lecture 1: Introduction to analytical optimization 1-9

Definition 6: Gradient of a function

Let f : D ⊂ Rn → R, x ∈ D. By a gradient of a function f we call function ∇f (x) : Rn → Rn at
the point f x:

∇f (x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

]

Relation of directional derivative and gradient? If the gradient of a function ∇f (x) exists at the point
x (which means that the function f is differentiable in x)

∇f (x) =

[
∂f

∂x1
, . . . ,

∂f

∂xn

]

then directional derivative of a function f in direction of a vector h is equal to the dot product of a gradient
∇f (x) and vector h:

df

dh
= ∇f (x|h) = ∇f (x)× h

1.3.1 First Order Conditions f : Rn → R

Theorem 5: First Order Conditions f : Rn → R.
Let f : D ⊂ Rn → R, f ∈ C1. If a function f has an extremum in point x, then ∇f (x) = 0

Proof. Let’s consider a function gx(t) = f(x + th) and h ∈ Rn : x + h ∈ D. Because f has an
extremum in x, then g has an extremum at t = 0, then g′(t) = 0, which means that g′(t)|t=0 = 0.
As a result:

g′(t)

∣∣∣∣
t=0

= lim
∆→0

g(t+∆)− g(t)

∆

∣∣∣∣
t=0

= lim
∆→0

f(x+∆h)− f(x)

∆
=

df

dh
(x) = ∇f (x)h = 0

Example 3. Let’s consider a function f(x) = x2
1 + x2

2. Find extremum of f(x).

∇f (x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x)

]
= [2x1, 2x2] = [0, 0]

1.3.2 Second Order Conditions f : Rn → R

To derive Second Order Conditions for a multivariate function we have to introduce a generalization of
a second derivative of a function, namely Hessian matrix.

1-10 MO Lecture 1: Introduction to analytical optimization

Definition 7: Hessian matrix

Let f : D ⊂ Rn → R, x ∈ D. By a Hessian matrix Hf (x) we call a matrix:

Hf (x) =

∂2f
∂x2

1
(x) . . . ∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) . . . ∂2f

∂x2
n
(x)

Caution! Hessian matrix, is a symmetric matrix only, when all second order partial derivatives are contin-

uous (Schwarz’s theorem). Which means that: ∂2f
∂xi∂xj

(x) = ∂2f
∂xj∂xi

(x)

Also, the previously introduced Taylor’s equation for a one dimensional case, can be redefined for the mul-
tivariate case:

Theorem 6: Taylor’s theorem f : Rn → R.
Let f : D ⊂ Rn → R and f ∈ C2 in each point of a section [x, x+ h]. Then:

f(x+ h) = f(x) +∇f (x)h+
1

2
hTHf (x)h+R3(x, h)

Theorem 7: Second Order Conditions f : Rn → R.
Let f : D ⊂ Rn → R, f ∈ C2. If in x∗ we have both:

1. ∇f (x
∗) = 0

2. Hf (x
∗) > 0

Then w x∗ is a local minimum of f .

Proof. From the Taylor’s theorem for Rn we have:

f(x+ h) = f(x) +∇f (x)h+
1

2
hTHf (x)h+ o(|h|2) = f(x) +

1

2
hTHf (x)h+ o(|h|2)

where f(x+h)−f(x) = 1
2h

THf (x)h+o(|h|2). From the Rayleigh’s theorem, value of a quadratic
form hTHf (x)h can be bounded from below by a λmin|h|2:

f(x+ h)− f(x) =
1

2
hTHf (x)h+ o(|h|2) ≥ 1

2
λmin|h|2 + o(|h|2)

For small enough h we get f(x+ h)− f(x) > 0

What is left is to tell what happens when the matrix is positive definite Hf (x
∗) > 0?

Theorem 8: Sylvester’s criterion.
Let A be a symmetric real values matrix:

A =

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

. . .
. . .

...
an,1 an,2 . . . an,n

We can define first minors of a matrci A as:

M1 = a1,1 M2 = det

([
a1,1 a1,2
a2,1 a2,2

])
. . . Mn = det

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

. . .
. . .

...
an,1 an,2 . . . an,n

Then:

1. Matrix A is positively defined if and only if all first minors Mi of A are positive.

2. Matrix is negatively defined if and only if all even first minors Mi of A are positive, and all odd
minors Mi are negative.

Example 4. a Let f(x) = x2
1 + x2

2. Find extrema of f(x):

First Order Conditions:

∇f (x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x)

]
= [2x1, 2x2] = 0 =⇒ [x1, x2] = [0, 0]

Second Order Conditions:

Hf ([0, 0]) =

[
∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x)

]
=

[
2 0
0 2

]
> 0

The f(x) function has only one extremum (minimum) at point [0, 0].

1-11

131890-S Optimization methods Winter 2024/2025

Lecture 2: Analytical optimization with constraints
Daniel Kaszyński

2.4 Properties of gradient

We have already introduced the concept of the gradient of a function – which is a vector of partial derivatives.
Gradient will be quite often used as part of a lecture, which is why we should consider its properties.
As a remainder:

Definition 8: Gradient

Let f : D ⊂ Rn → R, x ∈ D. Through a gradient of function f , we call function ∇f (x) : Rn → Rn

at point x:

∇f (x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

]

Remember that:

Relationship between Directional Derivative and Gradient? If the gradient of a function exists
∇f (x) at point x (which means that f is differentiable in x)

∇f (x) =

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
then directional derivative of a function f in direction of a vector h is equal to the dot product of the gradient
∇f and vector h.

Theorem 9: Gradient is the direction of the fastest growth.

Proof. Let |h| = 1, i.e. let it be a normalized vector. Then the growth rate of a function f at
point x in direction h is given by a directional derivative df

dh (x). Let us determine then a direction
h, which maximizes the growth rate of a function f , i.e. direction which maximizes the directional
derivative:

df

dh
(x) = ∇f (x)h = |∇f (x)||h|cos(∇f (x), h) = |∇f (x)|cos(∇f (x), h)

for |∇f (x)| ≥ 0 and cos(∇f (x), h) ∈ [−1, 1] the growth rate of f is the greatest when cos(∇f (x), h) =

1, which implies that h points in the same direction that ∇f (x) is. As a result h =
∇f (x)
|∇f (x)| .

2-1

2-2 MO Lecture 2: Analytical optimization with constraints

Theorem 10: Gradient is orthogonal to the level set of the function.

Proof. Let f : Rn → R, x∗ = (x∗
1, . . . , x

∗
n) and ∇f (x

∗) ̸= 0. Let r : R → Rn so that r(t0) = x∗.
Value of the function is constant for all points from a chosen level set (according to the definition)
and ∀t∈Rf(r(t)) = c. Then d

dt (f(r(t)) = ∇f (r(t))
dr
dt (t) = 0. In particular ∇f (r(t0))

dr
dt (t0) = 0.

Because dr
dt (t0) is a tangent space to the level set of a function f at x∗, it implies that ∇f (x

∗)
is orthogonal to the level set.

2.4.1 First Order Conditions, equality constraints

Theorem 11: Lagrange theorem, Method of Lagrange Multipliers.
Let f : D ⊂ Rn → R, f ∈ C1. If function f has an extremum at x related to h(x) = 0, where h : Rn → Rm,
h ∈ C1, at point x, then

∇f (x) + λTDh(x) = 0

For h : Rn → R (when there is only one constraint).

∇f (x) + λ∇h(x) = 0

Example 5. Let f(x) = x2
1 + x2

2, and h(x) = x2
1 + 2x2

2 − 1. Find the extremum of f(x) related to
h(x) = 1.

From First Order Conditions (FOC) we get:{
2x1 + λ2x1 = 0⇒ x1(1 + λ) = 0

2x2 + λ4x2 = 0⇒ x2(1 + 2λ) = 0

Which gives us 4 solutions:

1. [x1, x2] =
[
0, 1√

2

]
, λ = − 1

2

2. [x1, x2] =
[
0,− 1√

2

]
, λ = − 1

2

3. [x1, x2] = [1, 0], λ = −1

4. [x1, x2] = [−1, 0], λ = −1

MO Lecture 2: Analytical optimization with constraints 2-3

 0.5

 1

 1.5

 2

 2.5

 2.5

 2.5

 2.5

 3

 3

 3

 3

 3.5

 3.5

 3.5

 3.5

 4

 4

 4

 4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

 0 ●

●

●●

arrows = ∇f(x)
arrows = ∇h(x)

Figure 2.4: First Order Conditions equality constraints visualized

2.4.2 Second Order Conditions, equality constraints

Theorem 12: Second Order Conditions of Lagrange theorem.
Let f : D ⊂ Rn → R, h : Rn → Rm, h ∈ C2. Let there be x and λ such that:

1. ∇f (x) + λTDh(x) = 0, and

2. ∀z∈T (x),z ̸=0 we have zTHL(x)z > 0

Then by point x we call minimum of a function f , given that h(x) = 0. T (x) we call tangent space,
i.e.: T (x) = {z ∈ Rn : zTDh(x) = 0}. In a case when m = 1, we have T (x) = {z ∈ Rn : zT∇h(x) = 0}

Example 6. Lets consider 4 solutions that we have found from FOC:

1. [x1, x2] =
[
0, 1√

2

]
, λ = − 1

2

z : zT∇h(x) = [z1, z2][2x1, 4x2]
T = [z1, z2]

[
0,

4√
2

]
= 0

z10 + z2
4√
2
= 0⇒ z = [α, 0]

2-4 MO Lecture 2: Analytical optimization with constraints

[α, 0]THf ([x1, x2])[α, 0] = [α, 0]T
[

2 + 2λ 0
0 2 + 4λ

]
[α, 0] = [α, 0]T

[
1 0
0 0

]
[α, 0] = α2 > 0

2. [x1, x2] =
[
0,− 1√

2

]
, λ = − 1

2

3. [x1, x2] = [1, 0], λ = −1

z : zT∇h(x) = [z1, z2][2x1, 4x2]
T = [z1, z2] [1, 0] = 0

z11 + z20 = 0⇒ z = [0, α]

[0, α]THf ([x1, x2])[0, α] = [0, α]T
[

2 + 2λ 0
0 4 + λ

]
[0, α] = [0, α]T

[
0 0
0 −2

]
[0, α] = −2α2 < 0

4. [x1, x2] = [−1, 0], λ = −1

2.4.3 First Order Conditions, inequality constraints

Theorem 13: First order Karush-Kuhn-Tucker conditions, KKT theorem.
Let f : D ⊂ Rn → R, f ∈ C1 be an objective function, and let h : Rn → Rm, h ∈ C1 and g : Rn → Rp,
g ∈ C1 be the constraints. If x is an extremum then there exists a pair of λ = (λ1, . . . , λn) oraz µ =
(µ1, . . . , µn) such that:

1. Stationarity condition: ∇f (x) +
∑m

i=1 λi∇hi(x) +
∑p

i=1 µi∇gi(x) = 0

2. Primal feasibility: ∀i=1,...,m hi(x) = 0 and ∀i=1,...,pgi(x) ≤ 0

3. Dual feasibility: ∀i=1,...,p µi ≥ 0 ← for minimum

4. Complementary slackness: ∀i=1,...,p µigi(x) = 0

Example 7. f(x) = x2
1 + x2

2 constrained by [x1, x2] : g(x) = x2
1 + 2x2

2 − 1 ≤ 0

From FOC we have:
[2x1, 2x2] + µ[2x1, 4x2] = 0{

2x1 + µ2x1 = 0⇒ x1(1 + λ) = 0

2x2 + µ4x2 = 0⇒ x2(1 + 2λ) = 0

Which gives 5 solutions:

1. [x1, x2] =
[
0, 1√

2

]
, µ = − 1

2 Dual feasibility

2. [x1, x2] =
[
0,− 1√

2

]
, µ = − 1

2 Dual feasibility

3. [x1, x2] = [1, 0], µ = −1 Dual feasibility

4. [x1, x2] = [−1, 0], µ = −1 Dual feasibility

5. [x1, x2] = [0, 0], µ = 0 Stationarity condition

 0.5

 1

 1.5

 2

 2.5

 2.5

 2.5

 2.5

 3

 3

 3

 3

 3.5

 3.5

 3.5

 3.5

 4

 4

 4

 4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

 0

●● ●

arrows = ∇f(x)
arrows = ∇h(x)

Figure 2.5: First Order Conditions inequality constraints visualized

2.4.4 Second Order Conditions, inequality constraints

Theorem 14: Second Order Conditions, KKT theorem.
Let f : D ⊂ Rn → R, h : Rn → Rm, h ∈ C2, g : Rn → Rp, g ∈ C2. Let there be x, λ and µ, such that:

1. ∇f (x) + λTDh(x) + µTDg(x) = 0,

2. ∀z∈T (x),z ̸=0 we have zTHL(x)z > 0

Then we call point x a minimum of f , related to h(x) = 0.

T (x) we call tangent space, i.e.: T (x) = {z ∈ Rn : zTDh(x) = 0}. In a case where m = 1, we have
T (x) = {z ∈ Rn : zT∇h(x) = 0}

2-5

131890-S Optimization methods Winter 2024/2025

Lecture 3: Simplex algorithm
Daniel Kaszyński

3.5 Linear programming

Linear programming is an area of optimization that enables solving the simplest optimization problems -
linear problems. It is a method of obtaining the optimal result for linear models:

• Linear objective function,

• Linear equality or inequality constraints.

It’s widely used in various fields such as operations research, economics, engineering, and management science
to solve allocation, scheduling, and resource allocation problems efficiently.

The set of feasible solutions is a convex set (defined by a finite set of intersecting hallf-spaces - each determined
by a linear inequality).

The objective function is an affine function of a real variable defined on this polyhedron. Linear programming
allows finding a point on this polyhedron that gives the smallest (largest) value of the objective function.
In linear programming, the objective function and the constraints are all linear. The objective function
represents the quantity that needs to be optimized, while the constraints represent limitations or conditions
that must be satisfied. The goal is to find the values of decision variables that optimize the objective function
while satisfying all the constraints.

The general form of a linear programming problem is as follows:

• Find vector x

• that maximizes cTx

• subject to Ax ≤ b

• and x ≥ 0

where the vector x which components are to be determined, c is given vector of values that we want to
optimize, b is given vector of elements that we are constraining on and A is given matrix of variables next to
constraints. The function cTx whose value is to be maximized is called the objective function. The convex
polytope, over which the objective function is to be optimized, is constructed using constraints Ax ≤ b and
x ≥ 0.

3.6 Simplex algorithm

3.6.1 Algorithm basics

The simplex algorithm is a widely used method for solving linear programming problems. It’s often
considered one of the most efficient algorithms for solving linear problems in practice.

3-1

3-2 MO Lecture 3: Simplex algorithm

The simplex algorithm works by iteratively moving from one vertex (corner point) of the feasible region
to another along the edges of the polytope defined by the constraints until it reaches the optimal solution.
At each step, the algorithm selects a pivot element to improve the objective function value and moves to
the adjacent vertex that corresponds to the pivot element.

The simplex algorithm uses standard form to represent inequalities. Inequalities are thus converted to
equalities containing an additional slack variables.

Example 8. Let f(x, y, z) = −x+3y+2z be a function that we want to maximize under following
conditions:

• x+ y + z ≤ 6

• x+ z ≤ 4

• y + z ≤ 3

• x+ y ≤ 2

provided that x, y, z ≥ 0. Inequality constrains represented in standard form using slack variables
would look like this:

• x+ y + z + r + s+ t+ u = 6

• x+ z + r + s+ t+ u = 4

• y + z + r + s+ t+ u = 3

• x+ y + r + s+ t+ u = 2

and function f would be equal to −x+ 3y + 2z + r + s+ t+ u.

3.6.2 Simplex table

The simplex algorithm often uses the representation of the analyzed problem in the form of an simplex
table.

Assuming that a function f that we want to maximize is equal to −x + 3y + 2z and we maximize under
following conditions:

• x+ y + z ≤ 6

• x+ z ≤ 4

• y + z ≤ 3

• x+ y ≤ 2

• x, y, z ≥ 0

example simplex table for this case would look like this:

MO Lecture 3: Simplex algorithm 3-3

Table 3.1: Example simplex table

x y z r s t u
1 1 1 1 0 0 0 6
1 0 1 0 1 0 0 4
0 1 1 0 0 1 0 3
1 1 0 0 0 0 1 2
-1 3 2 0 0 0 0 0

In the created table, the area marked in yellow is matrix A - matrix of factors next to inequality constraints.
In the bottom row we see factors of the objective function. The column on the right side of the table contains
the inequality constrain values - b (values on the right side of inequalities). Last but not least, we also have
4 slack variables, one for each constrain. Identity matrix for those variables is marked in pink in the created
table.

If the column in the table corresponding to a given variable contains all zeros and a single one, the given
variable will be non-zero. Otherwise, this variable will be zero.

Initial simplex table is constructed in a way that the variables x, y, z are equal to zero (also called non-basic)
and slack variables are non-zero (also called basic).

3.6.3 Gaussian elimination algorithm

Next step in the simplex algorithm is usage of the Gaussian elimination algorithm.

The Gaussian elimination algorithm is a method used to solve systems of linear equations by transform-
ing the augmented matrix representing the system into row-echelon form through a sequence of elementary
row operations. It is a fundamental technique in linear algebra and is used in various applications such as
solving systems of linear equations, computing matrix inverses, and finding eigenvalues and eigenvectors.
Being efficient and numerically stable, it is widely used method for solving linear algebraic problems.

As the first step of Gaussian elimination we need to select the column (or variable) with the biggest value in
the bottom row of the table. If several variables are in a tie for the largest value, we can choose any of them.
The selected variable will be the new basic variable entering the basis and it’s corresponding column can
be referred to by key column or pivot column. Continuing with the example from subsection about simplex
table, the variable y has the greatest impact (since it is multiplied by 3).

Next we need to determine which slack variable will be replaced by the selected variable. To do that we
should calculate ratio of b column (the right-most column) to selected variable. Fortunately, all the values
of the y column are either 1 or 0 in our case. We should choose the row with minimum ratio, so in this
case the last constraint. The row with the minimum ratio value is called key row or pivot row.

Table 3.2: Pivot row and column in example simplex table

x y z r s t u
1 1 1 1 0 0 0 6
1 0 1 0 1 0 0 4
0 1 1 0 0 1 0 3
1 1 0 0 0 0 1 2
-1 3 2 0 0 0 0 0

The following step is to perform a series of elementary row operations so that the pivot column becomes

3-4 MO Lecture 3: Simplex algorithm

a unit column with 1 in the intersection with pivot row (pivot element). To achieve this, we must first divide
all elements of the pivot row by the pivot element (in our example pivot element is equal to 1 so the pivot
row stay the same). Then we divide the remaining rows by the pivot row to get zeros in the pivot column.

Table 3.3: Example simplex table after first iteration of the algorithm

x y z r s t u
0 0 1 1 0 0 -1 4
1 0 1 0 1 0 0 4
-1 0 1 0 0 1 -1 1
1 1 0 0 0 0 1 2
-4 0 2 0 0 0 -3 -6

These steps are repeated until all values in the bottom row are equal to or less than zero. This ensures that
the value of the analyzed solution cannot be improved any further.

Table 3.4: Example simplex table after all iterations of the algorithm

x y z r s t u
1 0 0 1 0 -1 0 3
2 0 0 0 1 -1 1 3
-1 0 1 0 0 1 -1 1
1 1 0 0 0 0 1 2
-2 0 0 0 0 -2 -1 -8

The final solution for this example is x = 0, y = 2 and z = 1. The variable x is zero because it is not a unit
column while other variables’ values can be read from the right-most column.

3.6.4 Simplex algorithm implementation

To implement the simplex algorithm, we must first prepare a function responsible for creating a simplex
table. It will first read the number of given variables and then prepare a matrix of values for the initial
simplex table. Using the R programming language, the example implementation of this function could look
like this:

1 create_simplex_table <- function(A_mat , b_vec , c_vec){

2 # Read number of variables/constraints

3 n_var <- length(c_vec)

4 n_con <- length(b_vec)

5

6 # Construct Simplex Table

7 st <- matrix(0,

8 nrow = n_con+1,

9 ncol = n_var+n_con+1)

10

11 st[1:n_con , 1 : n_var] <- A_mat

12 st[nrow(st), 1:n_var] <- c_vec

13 st[1:n_con , ncol(st)] <- b_vec

14 st[1:n_con , (n_var+1): (n_var+n_con)] <- diag(n_con)

15 return(st)

16 }

Listing 2: Implementation of the function responsible for creating a simplex table

MO Lecture 3: Simplex algorithm 3-5

The simplex algorithm also requires Gaussian elimination algorithm to be implemented. A single step of this
method will be responsible for selecting a pivot column and a pivot row and using them to transform selected
column into unit column. It is worth noting that for this purpose we can use the built-in R method - outer().
It enables you to create a new matrix or array by applying a function to every conceivable combination of
the items from two input vectors (where default function is multiplication). Implementation of Gaussian
elimination algorithm could be created as follows:

1 gaussian_elimination <- function(st , b_vec , c_vec){

2 # Read number of variables/constraints

3 n_var <- length(c_vec)

4 n_con <- length(b_vec)

5

6 # Select id of the column

7 i_col <- which.max(st[nrow(st), 1 : n_var])

8 if(st[nrow(st), i_col] <= 0){

9 return(TRUE)

10 }

11

12 # Select id of row

13 temp <- st[1:n_con ,i_col]

14 temp <- st[1:n_con ,ncol(st)] / temp

15 i_row <- which.min(temp)

16

17 # Gaussian Elimination

18 temp <- st[i_row ,] / st[i_row , i_col]

19 st <- st - outer(st[, i_col], st[i_row ,])

20 st[i_row ,] <- temp

21 return(st)

22 }

Listing 3: Implementation of the Gaussian elimination algorithm

Of course, at the end of the algorithm we would also like to be able to read the results of our calculations. A
method to read the results based on the simplex table obtained may be helpful. For example, such a method
might look like this:

1 read_results <- function(st , b_vec , c_vec){

2 # Read results

3 n_var <- length(c_vec)

4 n_con <- length(b_vec)

5

6 x_opt <- rep(NA , n_var)

7 for(i in 1 : n_var){

8 if((sum(st[,i])==1) & (max(st[,i])==1) & (min(st[,i])==0)){

9 id <- which(st[,i]==1)

10 x_opt[i] <- st[id, ncol(st)]

11 }else{

12 x_opt[i] <- 0

13 }

14 }

15 out <- list(x_opt = x_opt ,

16 f_opt = sum(x_opt * c_vec))

17 return(out)

18 }

Listing 4: Implementation of the function responsible for reading results

Having all the above implementations of the necessary functions, we can start implementing the algorithm
itself. The simplex algorithm should contain the following steps:

• creating the initial simplex table,

• repeating the Gaussian elimination algorithm iterations until all values in the bottom row are equal to
or less than zero,

• alternatively, the Gaussian elimination algorithm should end after a predetermined maximum number
of steps k,

• reading the results.

The final implementation of the algorithm looks as follows:

1 simplex_algorithm <- function(A_mat , b_vec , c_vec){

2 # Create Simplex Table

3 st <- create_simplex_table(A_mat , b_vec , c_vec)

4

5 # Gaussian Eliminations

6 k <- 1

7 while(TRUE){

8 temp <- gaussian_elimination(st, b_vec , c_vec)

9 if((length(temp) == 1) || (k >= 100)){

10 break

11 }

12 st <- temp

13 k <- k +1

14 }

15

16 # Read outputs

17 out <- read_results(st , b_vec , c_vec)

18 return(out)

19 }

Listing 5: Implementation of the Simplex algorithm

3-6

131890-S Optimization methods Winter 2024/2025

Lecture 4: Numerical approximations
Daniel Kaszyński

4.7 Finite differences

A finite difference is a mathematical expression of the form f(x + b) − f(x + a). If we divide the finite
difference by b − a, we get the difference quotient. They are often used in finite difference methods for the
numerical solution of differential equations.

4.7.1 Forward and backward differences

The most popular derivative approximation methods are forward and backward finite differences.

Definition 9: Derivative of a function

By a derivative of a function f : R→ R described by a forward finite difference we call a function:

f ′(x) =
df

dx
(x) = lim

h→0

f(x+ h)− f(x)

h
(4.14)

By a derivative of a function f : R→ R described by a backward finite difference we call a function:

f ′(x) =
df

dx
(x) = lim

h→0

f(x)− f(x− h)

h
(4.15)

Numerical differentiation algorithms estimating the derivative of a mathematical function using forward
finite difference or backward finite difference have error O(h) (this can be proven using Taylor’s Theorem).

From Taylor’s Theorem we know that:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + ... (4.16)

We are able to transform the expression into:

f ′(x)h = f(x+ h)− f(x)− 1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 − ... (4.17)

and dividing this expression by h we get:

f ′(x) =
f(x+ h)− f(x)

h
− 1

2
f ′′(x)h− 1

6
f ′′′(x)h2 − ... (4.18)

So we can deduce that the error in the forward difference is of order O(h).

Using the same methodology, we can transform the formula below:

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + ... (4.19)

4-1

4-2 MO Lecture 4: Numerical approximations

into a formula for the backward difference:

f ′(x) =
f(x)− f(x− h)

h
+

1

2
f ′′(x)h− 1

6
f ′′′(x)h2 − ... (4.20)

The backward difference has also error of order O(h).

4.7.2 Central difference

In addition to these two methods of approximating the derivative of a function, we can also show a third
one - using central difference. This method is sometimes called a symmetric.

Definition 10: Central derivative of a function

By a derivative of a function f : R→ R described by a central difference we call a function:

f ′(x) =
df

dx
(x) = lim

h→0

f(x+ h)− f(x− h)

2h
(4.21)

Numerical differentiation algorithms estimating the derivative of a mathematical function using central
difference have error O(h2). This is preferable as the error is smaller than previous methods (remember that
we assume h→ 0).

Similarly to the previously described approximations, we can use Taylor’s Theorem to derive a formula for
central difference. However, this time we will need two starting equations:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + ... (4.22)

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + ... (4.23)

By subtracting the two formulas above, we get:

f(x+ h)− f(x− h) = 2f ′(x)h+
1

3
f ′′′(x)h3 + ... (4.24)

f ′(x) =
f(x+ h)− f(x− h)

2h
− 1

3
f ′′′(x)h3 − ... (4.25)

4.8 Subtractive cancellation error

When working on calculating derivatives of functions, we may encounter not only mathematical but also
technical/hardware problems. One popular problem of this nature is subtractive cancellation error.

Subtractive cancellation error can occur while dealing with floating-point arithmetic. When computers
work with real numbers, they must somehow store a potentially infinite number of decimal places in those
numbers. For this purpose, they use, among others, float variables, which are a finite approximation of real
numbers. Most programming languages use a technical standard for floating-point arithmetic called IEEE
754. Unfortunately, precision is partially lost this way, but this is due to the computer’s finite memory.

Subtractive cancellation error is a phenomenon that may be present when subtracting two nearly equal
numbers. Floating-point numbers in computers have limited precision, and when you subtract two numbers
that are very close in value, the result may suffer from loss of significant digits.

MO Lecture 4: Numerical approximations 4-3

Example 9. Let a = 0.3 + 0.3 + 0.4− 1 and b = −1 + 0.3 + 0.3 + 0.4.

Following simple mathematics, we can conclude that a is equal to b. Unfortunately, calculations
performed on float variables may not give us the same result.

1 a <- 0.3+0.3+0.4 -1

2 b <- -1+0.3+0.3+0.4

3

4 print(a == b) # FALSE

5 print(a) # 0

6 print(b) # 5.551115e-17

Listing 6: Subtraction cancellation error example in R language

In this example, calculations performed to get a and b may result in very close, but different values.
Those results might not be as accurate as one might expect due to subtractive cancellation error.
The precision of the result depends on the number of significant digits that can be represented
in the floating-point format. Therefore, we cannot assume that when subtracting float variables
there will be no error which, although small, may spoil some simple comparisons and calculations.

To mitigate subtractive cancellation errors, various numerical analysis techniques and algorithms can be
employed, such as rearranging the expression to avoid subtracting nearly equal numbers or using higher
precision arithmetic when necessary. Additionally, understanding the limitations of floating-point arith-
metic and being aware of potential sources of error is crucial when working with numerical computations
in computer programs.

4.9 Complex Step Derivative

To avoid the problem of cancellation discussed in the previous section, various types of methodologies and
formula transformations can be applied. One possible solution is to use Complex Step Derivative. The
main idea behind this method is to take advantage of Taylor’s equation and imaginary numbers to remove
the need to subtract two float variables.

Let us start with Taylor’s equation and let’s use imaginary numbers to state it:

f(x+ ih) = f(x) + f ′(x)ih− 1

2
f ′′(x)h2 − 1

6
f ′′′(x)ih3 + ... (4.26)

Assuming that we want to calculate the first derivative of the function, we need to transform the formula:

f ′(x)ih = f(x+ ih)− f(x) +
1

2
f ′′(x)h2 +

1

6
f ′′′(x)ih3 + ... (4.27)

Then we need to isolate the derivative. We can start by dividing both sides by h:

f ′(x)i =
f(x+ ih)− f(x)

h
+

1

2
f ′′(x)h+

1

6
f ′′′(x)ih2 + ... (4.28)

To obtain only the derivative, we must also take care of the imaginary part:

f ′(x) = Im

(
f(x+ ih)− f(x)

h

)
+

1

6
f ′′′(x)h2 + ... (4.29)

4-4 MO Lecture 4: Numerical approximations

Fortunately, we were able to drop 1
2f

′′(x)h because it did not contain an imaginary part. This simplified
our formula, but it’s still not as good as we’d hope because we haven’t gotten rid of the subtraction of two
function instances. To do this, we should split the first part of our formula:

f ′(x) = Im

(
f(x+ ih)

h

)
− Im

(
f(x)

h

)
+

1

6
f ′′′(x)h2 + ... (4.30)

We can notice that Im
(

f(x)
h

)
has no imaginary part. So we can remove it from our equation. This leaves

us with a formula that helps to avoid the subtractive cancellation error problem:

f ′(x) = Im

(
f(x+ ih)

h

)
+

1

6
f ′′′(x)h2 + ... (4.31)

This formula is the essence of Complex Step Derivative. This is the fourth way we mentioned to calculate
the derivative of a function. This method as an error of O(h2) and does not require the subtraction of two
instance of the function f .

4.10 Comparison of the finite differences

To better understand the differences between the presented finite differences, it is worth conducting a series
of tests for a simple function.

Let f = sin(x2). Using the rules of symbolic differentiation, we can work out that f ′(x) = 2xcos(x2).

Let u = x2. Then, du
dx = 2x and df

du = cos(u) = cos(x2). If we put this information together, we get
the following equation:

f ′(x) =
df

dx
=

du

dx

df

du
= 2xcos(x2) (4.32)

Just to be sure, we can use the R programming language to calculate the derivative of the function f . To
do this, we must first import the Deriv library, which is used to calculate derivatives:

1 if(!require(Deriv)) install.packages(’Deriv’);

Listing 7: Import of Deriv library

When using external libraries, it is often worth checking their documentation. In R programming language
it can be done by adding ’?’ sign in front of library name:

1 # Access to library documentation

2 ?Deriv

Listing 8: Access to Deriv library documentation

Then, using this library, we can calculate the derivative of the function f :

1 f <- function(x) sin(x^2);

2 df <- Deriv(f)

3

4 cat(’f = ’, deparse(f)[2], ’\n’)

5 cat(’df = ’, deparse(df)[2], ’\n’)

Listing 9: Derivative of function f calculated using Deriv library

As a result of these calculations we get:

MO Lecture 4: Numerical approximations 4-5

f = sin(x^2)
df = 2x cos(x^2)

The plots of the function f and its derivative df would look as follows:

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

x

f(
x)

f(x)
df(x)

Figure 4.6: The plots of the function f and its derivative df

Of course, in order to compare different types of approximations of derivative functions in R programming
language, we first need to have implementations of these methods. Knowing the definitions and formulas for
these methods, creating these implementations is not a difficult task. For example, they may look like this:

1 diff_forward <- function (f, x, h = 10^-6) (f(x + h) - f(x)) / (h);

2 diff_backward <- function (f, x, h = 10^-6) (f(x) - f(x - h)) / (h);

3 diff_central <- function (f, x, h = 10^-6) (f(x + h) - f(x - h)) / (2*h);

4 diff_complex <- function (f, x, h = 10^-6) Im(f(x + h*1i)) / (h);

Listing 10: Finite differences implementations

Next, we can check the differences in the values obtained by these approximations at the given point x0 = 1.
The following code snippet gives us values for each of finite differences:

1 x0 <- 1

2

3 cat(’df = ’ , format(df(x0), nsmall = 20), " \n ")

4 cat(’--’ , " \n ")

5 cat(’diff_forward = ’ , format(diff_forward(f, x0), nsmall = 20), " \n ")

6 cat(’diff_backward = ’ , format(diff_backward(f, x0), nsmall = 20), " \n ")

7 cat(’diff_central = ’ , format(diff_central(f, x0), nsmall = 20), " \n ")

8 cat(’diff_complex = ’ , format(diff_complex(f, x0), nsmall = 20), " \n ")

Listing 11: Values obtained by finite differences in point x0 = 1

df = 1.08060461173627953002

4-6 MO Lecture 4: Numerical approximations

--

diff_forward = 1.08060346903915416306

diff_backward = 1.08060575443325035394

diff_central = 1.08060461179171340973

diff_complex = 1.08060461173868294082

As we can see, these values are close to each other and do not deviate too much from the real value of
the function’s derivative. Method diff complex achieves the best result because it is closest to the actual
value of the derivative.

In addition to checking individual function values for each of the finite differences, we can do many other
comparisons. For example, we can plot how fast relative error converges to 0 in terms of all of the numerical
differences. The plot that would be created for those purposes should have exponential scale, because
everything that is interesting to us will take place in a very narrow ranges. To improve visibility, logarithmic
scale is also recommended.

1e−20 1e−15 1e−10 1e−05 1e+00

1e
−

16
1e

−
12

1e
−

08
1e

−
04

1e
+

00

h

R
el

at
iv

e
E

rr
or

diff_forward
diff_backward
diff_central
diff_complex

Figure 4.7: Relative error for each of the finite differences on f

1 # Definition of x axis

2 h <- exp(log (10) * seq (-20, 0, length.out = 1000))

MO Lecture 4: Numerical approximations 4-7

3

4 # Plotting of the relative error for forward difference

5 plot(h, abs((df(x0) - diff_forward(f, x0, h)) / df(x0)), col = ’blue’,

6 log = ’xy’, type = ’l’, ylab = ’Relative Error ’, ylim = c(10 ^- 16, 1))

7

8 # Adding to plot backward , central and complex differences

9 lines(h, abs((df(x0) - diff_backward(f, x0 , h)) / df(x0)), col = ’green’)

10 lines(h, abs((df(x0) - diff_central(f, x0 , h)) / df(x0)), col = ’black’)

11 lines(h, abs((df(x0) - diff_complex(f, x0 , h)) / df(x0)), col = ’red’)

12

13 # Adding legend to the plot

14 legend(’bottomleft ’, c("diff_forward", "diff_backward", "diff_central", "diff_complex"),

15 col = c("blue" , "green" , "black" , "red"), lty = 1)

Listing 12: Relative error plot implementation

As we can see in the plot above, the characteristics of how relative error changes depending on h differ for
each approximation method. By tracking the values relative to the h axis from right to left, we can see how
relative error converges to zero (or in most cases just attempts to converge). For each finite difference we
can define the following behavior:

• diff forward and diff backward - Forward finite difference and backward finite difference behaved
very similar to each other while trying to converge relative error to zero. Both methods achieved
a minimum error at an h of approximately 1e − 08. From that point on, however, the error began
to increase. It was caused by described earlier subtractive cancellation error (look section 4.8). The
error caused by subtracting two float variables for smaller h values significantly affected the quality of
the results in those cases.

• diff central - Central difference behaved similarly to the two previously described methods, with
a few notable differences. First of all, at the beginning this method reached its minimum much faster
at around 1e−05. The slope of the relative error convergence for this approximation was much steeper.
This was caused by the fact that central difference has error O(h2). Furthermore, the relative error
values remained on average slightly below those obtained by forward and backward finite differences.

• diff complex - Complex step derivative approximation performed the best out of all described method-
ologies. Not only did it converge to zero at a rate comparable to central difference, but also it didn’t
suffer from the problem of the subtractive cancellation error. This allowed this method to achieve
relative error values close to zero to the point that the R language did not distinguish them from zero
(which is why they disappeared from the plot).

4.11 Automatic differentiation

Automatic Differentiation, also known as algorithmic differentiation or autodiff, is a technique used to
efficiently and accurately evaluate the derivatives of mathematical functions. The primary goal of this
technique is to automatically and systematically compute the derivatives of a given function, making it
especially useful in optimization, machine learning, and scientific computing.

Automatic differentiation sets itself apart from symbolic differentiation and numerical differentiation. Sym-
bolic differentiation encounters challenges in converting a computer program into a unified mathematical
expression, often resulting in inefficient code. On the other hand, numerical differentiation, employing the
method of finite differences, may introduce round-off errors during the discretization process and face issues
related to cancellation. These traditional methods struggle when calculating higher derivatives. In contrast,
automatic differentiation effectively addresses and resolves all these issues.

4-8 MO Lecture 4: Numerical approximations

To fully understand how automatic differentiation works, we must first become familiar with a few basic ideas
behind it. First of all, the decomposition of differentials provided by the chain rule of partial derivatives is
fundamental to automatic differentiation.

The chain rule is a concept in calculus that describes how to find the derivative of a composite function.
Mathematically, if you have the composition of two functions f(x) and g(x) such that f(g(x)), then the
chain rule states that the derivative of this composition with respect to x is the product of the derivative of
f with respect to its argument g(x) and the derivative of g with respect to x:

df

dx
f(g(x)) =

d

dx
(f ◦ g)(x) = df

dg

dg

dx
= f ′(g(x))g′(x) (4.33)

Another thing worth paying attention to is the fact that automatic differentiation uses computational graphs
(explicitly or implicitly). A computational graph is a representation of a mathematical expression or a com-
putational process. It is commonly used to visualize and understand the flow of computations involved in
evaluating a function or performing a series of operations.

Most mathematical formulas can be broken down into a series of basic arithmetic operations (e.g., addi-
tion, multiplication, exponentiation). To create a computational graph, we first create nodes. Nodes in
a computational graph represent mathematical operations or functions. Each node corresponds to a specific
computation, such as addition, multiplication, or a more complex operation. Edges in the graph depict
the flow of data or dependencies between the operations. An edge from one node to another indicates that
the output of the first operation is used as an input for the second operation. The inputs to the computa-
tional graph are usually represented as nodes with no incoming edges, while the outputs are nodes with no
outgoing edges.

Example 10. Let f(x1, x2) = (cos(x1

x2
)+ x1

x2
− sin(x2))(

x1

x2
− sin(x2)). Computational graph for such

a function would look as follows:

x1

x2

v1/v2

sin(v2)

cos(v3)

v3-v5

v4+v6

v7*v6

x1

x2

f(x1, x2)

V1 V3 V4 V7

V2 V5 V6

V8

Figure 4.8: Example computational graph of function f(x1, x2)

Another important part of the algorithm is the use of Dual Numbers. In each node of the computational
graph not only we will calculate primals of the function, but we will simultaneously compute their derivatives.
This simple trick will help us reuse already calculated in previous steps components of the formula in
future operations. At the same time, we limit ourselves to calculating derivatives of only simple arithmetic
operations.

In the R programming language, we can represent such Dual Numbers using object-oriented programming:

1 DualNumber <- function(val , eps =0) {

2 obj <- list(val = val , eps = eps)

3 class(obj) <- "DualNumber"

MO Lecture 4: Numerical approximations 4-9

4 return(obj)

5 }

Listing 13: Dual Number implementation

Last but not least, there is also the issue of calculating the results of individual operations in the computa-
tional graph. An elegant way to approach this problem is to use operator overloading. For each operator
(such as ’+’ or ’-’), we can use it to define a different behavior specifically tailored to our Dual Numbers.

Lets create overloads for each of the basic operations. Firstly, we can start with addition operator ’+’:

1 "+" <- function (x, y) {

2 if (class(x) == "DualNumber") {

3 val <- x$val + y$val
4 eps <- x$eps + y$eps
5 return(DualNumber(val , eps))

6 } else {

7 .Primitive("+")(x, y)

8 }

9 }

Listing 14: Addition operator overload

Each operator is a function that takes two parameters as input and gives us the result. First, we should
distinguish between the effect of the operator for Dual Numbers and other values (for which the effect of the
operator will remain unchanged). If we want to add two Dual Numbers, we must both add their values and
add the values of their derivatives. After that we can return newly created result as a Dual Number.

Proceeding in a similar way, we can implement operator overloading for the subtraction operator ’-’:

1 "-" <- function (x, y) {

2 if (class(x) == "DualNumber") {

3 val <- x$val - y$val
4 eps <- x$eps - y$eps
5 return(DualNumber(val , eps))

6 } else {

7 .Primitive("-")(x, y)

8 }

9 }

Listing 15: Subtraction operator overload

When overloading the multiplication operator - ’*’, we should recall Leibniz product rule (a formula used to
find the derivatives of products of two functions):

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) (4.34)

1 "*" <- function (x, y) {

2 if (class(x) == "DualNumber") {

3 val <- x$val*y$val
4 eps <-y$val*x$eps + x$val*y$eps
5 return(DualNumber(val , eps))

6 } else {

7 .Primitive("*")(x, y)

8 }

9 }

Listing 16: Multiplication operator overload

As the last operator, that we will do for the sake of this example implementation, we can overload power
operator. The formula for the derivative of power function may be helpful here:

f ′(x) =
d

dx
(xk) = kxk−1 (4.35)

We just need to remember to multiply the value obtained using this formula by the previously calculated
value of the derivative:

1 "^" <- function (x, k) {

2 if (class(x) == "DualNumber") {

3 val <- x$val^k
4 eps <- k*x$val^(k-1)*x$eps
5 return(DualNumber(val , eps))

6 } else {

7 .Primitive("^")(x, k)

8 }

9 }

Listing 17: Power operator overload

Dual Numbers and overloaded operators are enough for the automatic differentiation algorithm to work.
Now we can move on to testing the algorithm.

Example 11. Let A = 5 with sensitivity over 1-st variable, B = 4 with sensitivity over 2-st variable
and C = 7 with sensitivity over 3-st variable. Furthermore, let f(x1, x2, x3) = x2

1 + x1x2 + x2 + x3:

1 # Declaration of DualNumer values

2 A <- DualNumber (5, c(1,0,0))

3 B <- DualNumber (4, c(0,1,0))

4 C <- DualNumber (7, c(0,0,1))

5

6 # Calculation of function f(A, B, C) values

7 A^2 + A*B + A + C

Listing 18: Automatic differentiation example

When we run this calculations, we would get following results:

$val

[1] 57

$eps

[1] 15 5 1

attr(,”class”)

[1] ”DualNumber”

When performing a simple operation on numbers of the Dual Number type, we can obtain both the
value of the f function and the value of the derivative over each of the input variables. What’s more,
obtained values for $eps is precisely a gradient of function f in given point.

4-10

131890-S Optimization methods Winter 2024/2025

Lecture 5: Local methods
Daniel Kaszyński

5.12 Directional derivative and partial derivative

The directional derivative of a function measures how the function changes at a specific point in the direction
of a given vector. In other words, it quantifies the rate of change of a function along a particular direction.
It measures impact of the shift by vector h of function f .

Definition 11: Derivative of a 1D function

By a derivative of a 1D function f : R→ R we call a function:

f ′(x) =
df

dx
(x) = lim

δ→0

f(x+ δ)− f(x)

δ
(5.36)

When dealing with a one-dimensional function, we implicitly assume that the vector h is simply equal to
1. This means that the shift in x domain is multiplied by 1 when moving in this space. In a more general
case, especially when operating on multidimensional functions, we can move along different h vectors. They
should be therefore included in the formula.

Definition 12: Directional derivative of a function

By a directional derivative of a multidimensional function f : D ⊂ Rn → R, x ∈ D and h ∈ Rn : x+h ∈
D at point x along vector h we call a function:

df

dh
(x, h) = lim

δ→0

f(x+ δh)− f(x)

δ
(5.37)

df

dh
(x, h) = ∇f (x)h = |∇f (x)||h| cos(α) (5.38)

where ∇f (x) is a gradient of a function f and α is an angle between vectors ∇f (x) and h.

Partial derivative is a special case of directional derivative. A partial derivative describes the rate at which
a multivariable function changes with respect to one of its variables while keeping the other variables constant.
It is essentially the derivative of a function with respect to one of its independent variables, treating the other
variables as constants. Partial derivative is also a sensitivity of a function.

5-1

5-2 MO Lecture 5: Local methods

Definition 13: Partial derivative

Let f : D ⊂ Rn → R, x ∈ D and h ∈ Rn : x+h ∈ D. Partial derivative of f at the point x with respect
to variable xi, i = 1, 2, . . . n we call the function:

∂f

∂xi
(x) =

df

dei
(x)

where ei is the i-th versor of space Rn. Partial derivative of f with respect to xi is then a directional
derivative of f in direction of i-th versor, meaning that h = ei.

5.13 Kernel

Kernel (also known as the null space or nullspace) represents the set of solutions or vectors that ”vanish” or
map to the zero vector under the given linear transformation or matrix operation. The concept of the kernel
is fundamental in linear algebra and is used in various applications, including solving systems of linear
equations and understanding properties of linear transformations.

Consider a linear map represented as a m × n matrix A with coefficients in a field K, that is operating
on column vectors x with n components over K. The kernel of this linear map is the set of solutions to
the equation Ax = 0, where 0 is understood as the zero vector.

N(A) = Null(A) = ker(A) = {x ∈ Kn | Ax = 0} . (5.39)

Kernel of n-dimentional space is an identity matrix of size n. In simpler words, it is the n×n square matrix
with ones on the main diagonal (from top left to bottom right) and zeros elsewhere.

ker(An×n) =

e1
e2
...
en

e1 e2 . . . e3

1 0 . . . 0
0 1 . . . 0
...

. . .
. . .

...
0 0 . . . 1

Each row of this matrix (also called versor of space) is named ei, where i = 1, 2, . . . n. They are useful while
calculating partial derivative of a function (look Definition 4).

5.14 Optimality in multidimensional space

When working with multidimensional functions, we are often tasked with finding the extremum of those
functions. If we are using local methods to do that, we should find direction or a vector that will point us
towards said extremum. Local methods, as the name suggests, are considering only nearest neighbourhood
of a point in space. Having that knowledge, the simplest way to find extremum is to follow direction of
a quickest decrease (or increase) of a function. Vector that points in that direction is an optimal vector that
we are searching for.

Optimality requires from us stating two conditions beforehand:

MO Lecture 5: Local methods 5-3

• Naming the scoring function

• Choosing if we want to minimize or maximize said function.

Scoring function in most cases is just a provided function f . We can also notice, that minimizing the function
and maximizing the function are both very similar tasks. In fact, we can substitue maximizing the function
with minimizing the inverse of this function.

−4 −2 0 2 4

−
4

−
2

0
2

4

x

f(
x)

●

min(f(x))

●

max(−f(x))

f(x) = x^2 + 1
−f(x)

argmin
x

f(x) = argmax
x

(−f(x)) (5.40)

Example 12. Let f(x, y) = x2+2y2 and x0 = (2, 3). Plot for such a function would look as follows:

X-axis

4
2

0
2

4

Y-a
xis

4

2

0

2

4

f (
x,

y)

0

10

20

30

40

50

60

70

10

20

30

40

50

60

Figure 5.9: Function f(x) = x2 + 2y2

5-4 MO Lecture 5: Local methods

Function f has an extremum in point (0, 0). If we were to find that extremum from any starting
point x0 we would need to find an optimal vector that represents quickest decrease in function f .
This vector is represented by the antigradient of this function (−∇f (x)).

 5

 10

 15

 20

 20

 25

 25

 30

 30

 35

 35

 35

 35

 40

 40

 40

 40

 45

 45

 45

 45

−4 −2 0 2 4

−
4

−
2

0
2

4

● x0

− ∇f(x)

Figure 5.10: Vector starting at point x0 that represents quickest decrease in function f

The directional derivative can help with finding the optimal vector. If we want to minimize a function (like
in Example 1), lets consider mathematical formula for the directional derivative:

argmin
h

df

dh
(x, h) = argmin

h
|∇f (x)||h| cos(∢(∇f (x), h)) (5.41)

Assuming that the length of the gradient ∇f (x) is constant and the length of the vector h is constant,
the main parameter that we can use is the angle between these vectors (cos(∢(∇f (x), h))). The gradient
shows us the direction of the fastest increase in the function value. Naturally, if we want to minimize the
function, we should choose the opposite direction - antigradient. This is also confirmed by the formula above
as cos(180o) is equal to -1 while vector lengths are always positive values.

MO Lecture 5: Local methods 5-5

x

co
s(

x)

0
π

2
π

3π

2
2π

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●
Max

●
Min

●Zero ●Zero

cos(x)

Figure 5.11: Cosinus function

5.15 Gradient descent

Gradient descent is an optimization algorithm commonly used to minimize nonlinear analytical functions.
Those functions are often the cost or loss function in machine learning and other optimization problems.
The goal of gradient descent is to iteratively move towards the minimum of a function by adjusting its
parameters.

Definition 14: Gradient descent

Given that gradient descent is an iterative algorithm, by a point calculated at (k − 1)-th step of
the gradient descent of function f : D ⊂ Rn → R, xk ∈ D we call:

xk+1 = xk − α∇f (xk) (5.42)

where k ∈ N is an iteration number, α is predefined learning rate and ∇f (xk) is the gradient of
a function f in point xk.

The general idea is to take repeated steps in the opposite direction of the gradient (or approximate numerical
gradient) of the function at the each consecutive point, because this is the direction of steepest descent. On
the other hand, stepping in the direction of the gradient will lead to a local maximum of that function.

Example 13. Knowing the formula for each step of gradient descent of function f , let x1 = x0 −
α∇f (x0), where x0 is a starting point, x1 is the next point calculated in direction of biggest function
decrease and parameter α is learning rate set to 0.1.

Following the same process, we can calculate the points even further down the line in the iterative
manner:

• x2 = x1 − α∇f (x1)

• x3 = x2 − α∇f (x2)

5-6 MO Lecture 5: Local methods

• x4 = x3 − α∇f (x3) (...)

Let f(x) = x2 and x0 = 1. Values for the next points x0, x1, x2... in gradient descent iterations are
equal to:

• x1 = x0 − α∇f (x0) = 1− 0.1 · 2 = 0.8

• x2 = x1 − α∇f (x1) = 0.8− 0.1 · 1.6 = 0.64

• x3 = x2 − α∇f (x2) = 0.64− 0.1 · 1.28 = 0.512

• x4 = x3 − α∇f (x3) = 0.512− 0.1 · 1.024 = 0.4096 (...)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(x
)=

x2

●●●●●●●●●●●●●●●

●

●

●

●
●

●●●●●●●●●●

... , x2 , x1 , x0

f(x) = x2

Figure 5.12: Converging of consecutive values of points x0, x1, x2... to extremum of function f(x) = x2 upon
introducing learning parameter α = 0.1

Using programming language R we can write a simple gradient descent implementation. First of all, we need
a function to calculate the gradient. We could use grad(f, x) from numDeriv library or we could implement
it from scratch like so:

1 if(!require(docstring)) library(docstring) # A library for code documentation!

2

3 num_grad <- function(f, x, h = 10^-6){

4 #’ Central Numerical Gradient

5 #’

6 #’ @description Function responsible for determining the numerical gradient

7 #’ by calculating the vector of central partial derivatives.

8 #’

9 #’ @param f function. The function which gradient we determine.

10 #’ @param x numerical vector. The point at which the numerical gradient

MO Lecture 5: Local methods 5-7

11 #’ is determined.

12 #’ @param h scalar. Finite difference value.

13 #’

14 #’ @usage num_grad(f, x)

15 #’

16 #’ @return Vector of partial derivatives of function f.

17

18 n <- length(x)

19 g <- rep(NA, n) # memory preallocation for storing gradient

20 e <- diag(n)

21

22 # calculation of partial derivatives

23 for(i in 1 : n) g[i] = (f(x+h*e[i,])-f(x-h*e[i,]))/(2*h)

24 return(g)

25 }

Listing 19: Numerical gradient implementation

The above function has comments that allow us to view the function documentation. It will contain a short
description, input parameters and return values. We can access the documentation using the following
command:

1 # Provides access to documentation

2 ?num_grad

Listing 20: Function documentation access

After running this command, the following documentation will be displayed:

Figure 5.13: Numerical gradient function docstring documentation

Now we can test how this numerical gradient function works. To accomplish this, first we need to prepare
input parameters. Afterwards, we can invoke said function, check out its results and optionally benchmark
it.

5-8 MO Lecture 5: Local methods

1 # Input parameters

2 my_fun <- function(x) 2*x[1]^2 + x[2]^2

3 c(3,4) -> x0 # Caution! Arrows not only to the left!

4

5 # Results

6 my_fun(x) # 2*3^2+4^2 = 17 # Try also: sin(x^2);

7 x0 <- c(-3, -2)

8 my_fun(x0) # 2*(-3)^2+(-2)^2 = 22

9 num_grad(my_fun , x0 , 10^ -6) # returns vector [-12, -4]

10

11 # Benchmark 1

12 if(!require(numDeriv)) library(numDeriv) # Library for numerical calculations

13 grad(my_fun , x0) # gradient

14 hessian(my_fun , x0) # hessian

15

16 # Benchmark 2

17 if(!require(Deriv)) install.packages(Deriv); # Library for symbolic calculations

18 my_fun <- function(x, y) 2*x^2 + y^2

19 df <- Deriv(my_fun)

20 cat(’f = ’, deparse(my_fun)[2], ’\n’)

21 cat(’df = ’, deparse(df)[2])

Listing 21: Numerical gradient tests

Having a working implementation of the gradient function at hand, we can move on to creating a function
implementing the gradient descent algorithm:

1 gradient_descent <- function(f, x, a = 0.1, K = 100){

2 #’ Gradient Descent

3 #’

4 #’ @description Function responsible for calculating gradient descent

5 #’ of function f over K steps.

6 #’

7 #’ @param f function. The target function for the algorithm.

8 #’ @param x numerical vector. The starting point for the algorithm.

9 #’ @param a scalar. Optional parameter that determines learning rate (defaults to 0.1).

10 #’ @param K scalar. Optional parameter that determines maximum iteration limit (defaults

to 100).

11 #’

12 #’ @usage gradient_descent(f, x, a, K)

13 #’

14 #’ @returns

15 #’ List of various outputs containing the following:

16 #’ * x_opt: found solution ,

17 #’ * f_opt: value of target function in the found solution ,

18 #’ * x_hist: history of explored solutions ,

19 #’ * f_hist: history of target function values ,

20 #’ * t_eval: time elapsed during algorithm calculations.

21

22 start_time <- Sys.time()

23 results <- list(x_opt = x,

24 f_opt = f(x),

25 x_hist = matrix(NA, nrow = K, ncol = length(x)),

26 f_hist = rep(NA , K),

27 t_eval = NA)

28

29 results$x_hist[1,] <- x

30 results$f_hist [1] <- f(x)

31

32 for(k in 2: K){

33 # description of the transition from point x_k to x_k+1

34 x_new <- x - a * grad(f, x)

35

36 # checking whether the new solution

MO Lecture 5: Local methods 5-9

37 # is the best so far

38 if(f(x_new) < results$f_opt){
39 results$x_opt <- x_new

40 results$f_opt <- f(x_new)

41 }

42

43 results$x_hist[k,] <- x_new

44 results$f_hist[k] <- f(x_new)

45

46 x <- x_new

47 }

48 # time difference between the end and start of the algorithm

49 results$t_eval <- Sys.time() - start_time

50 return(results)

51 }

Listing 22: Gradient descent implementation

Example 14. Let f(x1, x2) =
1

8
(x1)

2 + (x2)
2 and x0 = (3, 4).

Function f at point x0 has value equal to 17
1

8
. After K = 100 iterations of our implementation

of gradient descent algorithm, this value is worked down to approximately 0.00711 which is closer
to global minimum of the function f - zero. Values at each step of this algorithm can be seen on
the plot below:

0 20 40 60 80 100

0
5

10
15

Iteration

f(x
)=

1 8x 12
+

x 22

f(x)

Figure 5.14: Values of function f gradually calculated over 100 iterations using gradient descent

We can plot not only values calculated by this algorithm, but also positions obtained in subsequent
iterations in 2D space. The path covered by the gradient descent algorithm can be seen in the plot

5-10 MO Lecture 5: Local methods

below:

 2

 4

 4

 6

 6

 8

 8

 10

 10

 12

 12

 14

 14

 16

 16

−4 −2 0 2 4

−
4

−
2

0
2

4

xk − α∇f(xk)

Figure 5.15: Path covered by the gradient descent algorithm on function f over 100 iterations in 2D space

5.16 Learning rate

The learning rate is a hyperparameter that plays a crucial role in controlling the step size at each iteration
of the gradient descent algorithm. In the context of machine learning, learning rate is often represented
by symbol α. The learning rate determines how much we should adjust the parameters with respect to
the gradient of the cost function.

Why and how is it used? Lets consider following example:

Example 15. Knowing that the gradient indicates the greatest increase in function f , let x1 =
x0 −∇f (x0), where x0 is a starting point and x1 is the next point calculated in direction of biggest
function decrease. For now assume that learning rate α is equal to 1.

Following the same process, we can calculate the points even further down the line in the iterative
manner:

• x2 = x1 −∇f (x1)

• x3 = x2 −∇f (x2)

MO Lecture 5: Local methods 5-11

• x4 = x3 −∇f (x3) (...)

Let f(x) = x2 and x0 = 1. Knowing that the gradient of a 1D function is a simple derivative of said
function, we can calculate points x0, x1, x2... for f(x):

• x1 = x0 −∇f (x0) = 1− 2 = −1

• x2 = x1 −∇f (x1) = −1− (−2) = 1

• x3 = x2 −∇f (x2) = 1− 2 = −1

• x4 = x3 −∇f (x3) = −1− (−2) = 1 (...)

As we can see, a kind of deadlock has been achieved following such steps. Consecutive values just
oscillate around the extremum, never converging to it.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

f(x
)=

x2

● ●

●

x0 , x2 , ...
●

x1 , x3 , ...

f(x) = x2

Figure 5.16: Simple deadlock created due to using whole gradient value while calculating points x0, x1, x2...

The situation only gets worse if we assume that the function f(x) = x4. When calculating points
x0, x1, x2... we get increasingly larger values:

• x1 = x0 −∇f (x0) = 1− 4 = −3

• x2 = x1 −∇f (x1) = −3− (−108) = 105

• x3 = x2 −∇f (x2) = 105− 4, 630, 500 = −4, 630, 395

• x4 = x3 −∇f (x3) ≈ −4630395− (−3.9711301e+ 20) ≈ −3.9711301e+ 20 (...)

5-12 MO Lecture 5: Local methods

One of the possible solutions for problem illustrated in Example 4 is to introduce some kind of learning
parameter, learning parameter or step size parameter (however we want to name it). This parameter would
be responsible for controlling the size of the steps we are taking in each iteration. In other words, it would
reduce the impact that gradient would have during each calculation. The mentioned parameter is exactly
what learning rate is suppose to be. It is an integral part of the gradient descent algorithm and has big
impact on how this algorithm performs.

The learning rate is a critical hyperparameter that needs to be carefully chosen. If the learning rate is too
small, the algorithm may converge very slowly, requiring a large number of iterations to reach the minimum.
On the other hand, if the learning rate is too large, the algorithm may overshoot the minimum and fail to
converge or oscillate around the minimum.

Example 16. Let f(x1, x2) =
1

8
(x1)

2 + (x2)
2 and x0 = (3, 4).

The path covered by the gradient descent algorithm may vary depending on the chosen learnig rate.
Let α1 = 0.1, α2 = 0.4 and α3 = 0.8. How gradient descent converges using this parameters can be
seen on the plot below:

 2

 4

 4

 6

 6

 8

 8

 10

 10

 12

 12

 14

 14

 16

 16

−4 −2 0 2 4

−
4

−
2

0
2

4

α1 = 0.1
α2 = 0.4
α3 = 0.8

Figure 5.17: The impact of learning rate on the path traveled by the gradient descent algorithm on function
f .

MO Lecture 5: Local methods 5-13

5.17 Gradient descent in neural networks

Gradient descent is often used when dealing with neural networks. It is a core optimization algorithm behind
training of the neural network. The objective during training is to minimize a cost function, which measures
the difference between the predicted outputs of the neural network and the actual target values.

Gradient descent is well-suited to use while optimizing multi-argument functions. Problems for which neural
networks are used often deal with such functions. One of the common tasks for which neural networks are
used is image classification.

When creating the neural network we need to specify its architecture, including the number of layers, the
number of neurons in each layer, and the activation functions. The first layer of neurons, being the input
layer, is directly related to the type of input data. In image classification, number of neurons in this layer
is usually equal to number of pixels in analyzed image multiplied by 3 when dealing with colored input (for
each of RGB channels).

Figure 5.18: Number of pixels multiplied by 3 RGB channels as input for the neural network

In addition to the input layer, we also need to determine the number of neurons in the hidden layers and the
output layer. The number and structure of hidden layers can vary depending on the chosen neural network
approach. The number of neurons in the output layer however usually corresponds to the number of possible
results - categories.

Each neuron in the network has connections with neighboring layers. This connections as well as neurons have
special parameters called weights and biases. Weights represent the strength of connections between neurons
in different layers of a neural network. Each connection between neurons is associated with a weight, and
these weights are adjusted during the training process to enable the network to make accurate predictions.
Biases are additional parameters in each neuron that allow the network to shift the activation function. They
provide the model with flexibility to account for situations where the input to the neuron is insufficient to
activate it. Biases are adjusted during training, along with weights, to improve the overall performance of
the network. In a neural network layer, the output of each neuron is computed by applying a weighted sum
of the inputs, followed by an activation function. Mathematically, the output Oj of neuron j in layer is given
by:

Oj = σ

(
n∑

i=1

wij · xi + bj

)
(5.43)

where wij is the weight of the connection between neuron i in the previous layer and neuron j in the current

5-14 MO Lecture 5: Local methods

layer, xi is the input from neuron i, bj is the bias of neuron j, σ is the activation function, and n is the number
of neurons in the previous layer.

Weights and biases are chosen at random at first, but need to be adjusted during training of neural network.
As one would expect, the results of randomly initialized networks are not good in most cases. To estimate
how well a neural network performs, a so-called costfunction is created. It is a mathematical measure that
quantifies the difference between the predicted output of the network and the actual target values. Common
cost function used for regression problems, where the goal is to predict a continuous value, is called Mean
Squared Error (MSE). The mean squared error is the average of the squared differences between the predicted
and actual values:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.44)

where n is the number of data points, yi is the actual target, and ŷi is the predicted output.

We can think of the cost function as a function that accepts all network weights and biases as input, and
outputs one number that is an assessment of the network’s performance. This multi-parameter function
is then minimized using gradient descent. The vector created using gradient descent contains a number of
changes that should occur in each of the weights and biases to approach the minimum of the cost function -
so that the results obtained by the network are closer to the expected results.

∇C(w0, w1, ..., wn) (5.45)

where ∇C is gradient used in gradient descent, n is combined number of all the weights and biases and wn

is value of n-th weight or bias.

5.18 Steepest descent

Steepest descent is another optimization algorithm commonly used to minimize nonlinear analytical func-
tions. It is very similar to the gradient descent algorithm in its structure. The goal of steepest descent is also
to iteratively move towards the minimum of a function by adjusting its parameters. However, in contrary
to gradient descent, we do not set the learning rate parameter of the algorithm upfront. We only provide
the maximum learning rate value (maximum step size in direction of antigradient), and then the algorithm
determines the optimal value of this parameter.

Definition 15: Steepest descent

Given that steepest descent is an iterative algorithm, by a point calculated at (k − 1)-th step of the
gradient descent of function f : D ⊂ Rn → R, xk ∈ D we call:

xk+1 = xk − αk−best∇f (xk) (5.46)

where k ∈ N is an iteration number, ∇f (xk) is the gradient of a function f in point xk and αk−best is
the best learning rate found over g steps of linear search.

Using this algorithm, we are not only taking steps in the optimal direction, but also automatically select
the best size of those steps. We can calculate the best step size or learning rate in several ways. One way is

MO Lecture 5: Local methods 5-15

to take advantage of the gradient descent formula and use it to calculate the its derivative over the learning
rate α. Finding the minimum of said derivative would give us the optimal α parameter.

xk+1 = argmin
α

d

dα
(xk − α∇f (xk)) (5.47)

Unfortunately, there is a problem with this solution. If we were to use derivative in our equation, we
would end up with symbolical algorithm. Implementing such an algorithm would require us to be able to
quickly calculate the derivative of any function. This is not always an easy task. It is easier for computers
to perform calculations using numerical algorithms. This leads us to the next solution - approximating
the optimal learning rate value.

To approximate step size we can linearly search through different points along the direction pointed by
the antigradient and check what results we get with them. Of course, we don’t want to search through
the infinite number of points we can find on this line. For this purpose, we should set the maximum search
range (i.e. the upper α limit - αmax) as well as the starting point of the search xk. However, there are also
an infinite number of points on the section. Therefore, we also set the g parameter, which determines how
many points we should check on this section.

The steepest descent algorithm resembles the gradient descent algorithm with one key difference. In each
step of the algorithm, we determine g points in the direction of the antigradient and arrange them at an
equal distance from each other on a section of length controlled by αmax. It is equivalent to discreetly going
over g steps from α = 0 to α = αmax and choosing the best outcome.

 2

 4

 4

 6

 8

 10

 12

 14

 16

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2
3

4 ●x0

●x1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

g points searched

antigradient direction

Figure 5.19: Points considered during one iteration of steepest descent algorithm of function f

This is somewhat of a heuristic approach. This algorithm will not provide us with optimal value of the step

5-16 MO Lecture 5: Local methods

size but an approximation of one. With a sufficiently large parameter g, we will obtain a value close to
the optimal at a relatively low computational cost. The main advantage of this algorithm compared to
the gradient descent algorithm is a better adjusted step size in each iteration. Unfortunately, this also has
disadvantages - including higher computational costs of a single iteration, which, however, is often offset in
the long run by the better quality of the obtained steps.

Example 17. Let f(x1, x2) =
1

8
· (x1)

2 + (x2)
2 and xstart = (3, 4).

Additionally, let the parameters of steepest descent algorithm be αmax = 5 and the parameter
g = 1000. How steepest descent converges using this parameters can be seen on the plot below
(alongside with path created by gradient descent):

 2

 4

 4

 6

 6

 8

 8

 10

 10

 12

 12

 14

 14

 16

 16

−4 −2 0 2 4

−
4

−
2

0
2

4

Gadient descent
Steepest descent

Figure 5.20: Comparison of the path obtained by the steepest descent and gradient descent algorithms on
function f in 2D space

We can observe an interesting pattern in the path created by the steepest descent algorithm. The con-
secutive steps of the algorithm iterations create sections perpendicular to each other. The same
pattern repeats itself and gets closer and closer to the extremum of the function. This behavior is
not random or accidental. This is due to the fact that the gradient of the function at any point does
not have to indicate the global extremum, but the direction of the fastest decline of the function
value. The step size is adjusted linearly until the function stops decreasing and reaches stationarity.
It would then reach the tangent space, where the function stops decreasing (and as it moves further,
it starts increasing). From the newly determined point, since it lies on tangent space, the direction

MO Lecture 5: Local methods 5-17

of the function’s fastest decrease is at an angle of 90o from the direction of the last step.

 2e−04

 4e−04

 4e−04

 6e−04

 6e−04

 8e−04

 8e−04

 0.001

 0.001

 0.0012

 0.0012

 0.0014

 0.0014

 0.0016

 0.0016

−0.04 −0.02 0.00 0.02 0.04

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Steepest descent

Figure 5.21: Closeup of the path obtained by the steepest descent algorithm on function f in 2D space

Using programming language R we can write a steepest descent implementation. First of all, we need
a function to linearly search the best solution over g points:

1 line_search <- function(f, x0, x1, g = 100) {

2 #’ Line search

3 #’

4 #’ @description Helping function responsible for finding the best point judging by

function f

5 #’ over g linearly distributed points.

6 #’

7 #’ @param f function. The target function for the algorithm.

8 #’ @param x0 numerical vector. The starting point for the algorithm.

9 #’ @param x1 numerical vector. The end point for the algorithm (or max range of step).

10 #’ @param g scalar. Optional parameter that is responsible for the number of iterations of

searching for the best step size

11 #’ in each iteration of the algorithm itself (defaults to 100).

12 #’

13 #’ @usage line_search(f, x0 , x1 , g)

14 #’

15 #’ @returns

16 #’ x_best: best found point judging by function f

17

18 # setting x0 as a starting point

5-18 MO Lecture 5: Local methods

19 x_best <- x0

20 # looping over g points in direction of point x1

21 for(i in 1 : g) {

22 t <- i / g

23 x_t <- t*x1+(1-t)*x0

24 if(f(x_t) < f(x_best)) {

25 x_best <- x_t

26 } else {

27 break

28 }

29 }

30 return(x_best)

31 }

Listing 23: Line search implementation

Heaving the line search function ready, we can proceed to implement the main part of the algorithm. It can
be done as a following function steepest descent that is based on previous gradient descent implementation:

1 steepest_descent <- function(f, x, a = 5, g = 100, K = 100){

2 #’ Steepest Descent

3 #’

4 #’ @description Function responsible for calculating steepest descent

5 #’ of function f in g points each iteration over K steps.

6 #’

7 #’ @param f function. The target function for the algorithm.

8 #’ @param x numerical vector. The starting point for the algorithm.

9 #’ @param a scalar. Optional parameter that determines max learning rate (defaults to 5).

10 #’ @param g scalar. Optional parameter that is responsible for the number of iterations of

searching for the best step size

11 #’ in each iteration of the algorithm itself (defaults to 100).

12 #’ @param K scalar. Optional parameter that determines maximum iteration limit (defaults

to 100).

13 #’

14 #’ @usage steepest_descent(f, x, a, g, K)

15 #’

16 #’ @returns

17 #’ List of various outputs containing the following:

18 #’ * x_opt: found solution ,

19 #’ * f_opt: value of target function in the found solution ,

20 #’ * x_hist: history of explored solutions ,

21 #’ * f_hist: history of target function values ,

22 #’ * t_eval: time elapsed during algorithm calculations.

23

24 start_time <- Sys.time()

25 results <- list(x_opt = x,

26 f_opt = f(x),

27 x_hist = matrix(NA, nrow = K, ncol = length(x)),

28 f_hist = rep(NA , K),

29 t_eval = NA)

30

31 results$x_hist[1,] <- x

32 results$f_hist [1] <- f(x)

33

34 for(k in 2: K){

35 # description of the transition from point x_k to x_k+1

36 x_new <- line_search(f, x, x - a * grad(f, x), g)

37

38 # checking whether the new solution

39 # is the best so far

40 if(f(x_new) < results$f_opt){
41 results$x_opt <- x_new

42 results$f_opt <- f(x_new)

43 }

44

45 results$x_hist[k,] <- x_new

46 results$f_hist[k] <- f(x_new)

47

48 x <- x_new

49 }

50 # time difference between the end and start of the algorithm

51 results$t_eval <- Sys.time() - start_time

52 return(results)

53 }

Listing 24: Steepest descent implementation

5-19

131890-S Optimization methods Winter 2024/2025

Lecture 6: More local methods
Daniel Kaszyński

6.19 Newton Descent

6.19.1 Theory behind Newton Descent

Newton descent is another iterative algorithm often used to minimize functions, similarly to gradient descent
and steepest descent discussed in previous lectures. It uses second order approximations to find critical points
of given function f . The basic idea of Newton’s method in optimization is to iteratively update an initial
guess for the optimal solution based on the function’s first and second derivatives. The update rule is derived
from the Taylor series expansion of the function around the current guess.

To better understand how this algorithm works, let’s start with Taylor series approximation around point
xk going up to second degree derivative (second-order Taylor approximation of f):

f(xk + h) ≈ f(xk) + f ′(xk)h+
1

2
f ′′(xk)h

2 (6.48)

The goal of this method is to find h for which the function around a given point xk changes the fastest.
We assume that xk in each step is given and therefore constant. With this information we can make an
observation that Taylor series is a poly-nominal formula for approximating values (f(xk), f

′(xk) and
1
2f

′′(xk)
are constant leaving us with only h to work with).

Next up, we can apply First Order Conditions and equate the derivative of our approximation to zero:

d

dh

(
f(xk) + f ′(xk)h+

1

2
f ′′(xk)h

2

)
= f ′(xk) + f ′′(xk)h = 0 (6.49)

Then, using a simple formula transformation, we can obtain the formula for the optimal value of h:

h = − f ′(xk)

f ′′(xk)
(6.50)

This formula for h can be used to calculate steps taken in subsequent iterations of Newton descent algorithm
for 1D functions.

Definition 16: Newton Descent for 1D function

Given that Newton descent is an iterative algorithm, by a point calculated at (k − 1)-th step of
the gradient descent of function f : D ⊂ Rn → R, xk ∈ D we call:

xk+1 = xk + h = xk −
f ′(xk)

f ′′(xk)
(6.51)

where k ∈ N is an iteration number, f ′(xk) is the derivative of a function f in point xk and f ′′(xk) is
the second derivative of a function f in point xk.

6-1

6-2 MO Lecture 6: More local methods

The Newton descent presented in formula above (6.51) can be generalized to more than one dimension
by replacing the derivative with the gradient and the reciprocal of the second derivative with the inverse
of the Hessian matrix (because as we know from previous lectures, Hessian matrix is a generalization of
a second derivative).

Definition 17: Newton Descent

Given that Newton descent is an iterative algorithm, by a point calculated at (k − 1)-th step of
the gradient descent of function f : D ⊂ Rn → R, xk ∈ D we call:

xk+1 = xk −Hf (xk)
−1∇f (xk) (6.52)

where k ∈ N is an iteration number, Hf (xk)
−1 is the inverse of the Hessian matrix and ∇f (xk) is

the gradient of a function f calculated in point xk.

Caution! When using Newton descent we do not know by default if we are optimizing functions towards
minimum, maximum or other critical points of given function. Newton descent is steering towards stationarity
point of a function. That’s why it is good practice to use Newton descent as the last optimization step in
order to more quickly reach the extremum of the function that we approached using another algorithm.

Example 18. Let f(x) = ax2 + bx+ c and x0 a starting point for Newton descent algorithm.

Using Newton descent formula for the given 1D function f , we get:

x1 = x0 −
2ax0 + b

2a
(6.53)

We can then divide the fraction obtained on the right side of the equation into two parts:

x1 = x0 −
2ax0

2a
− b

2a
(6.54)

Thanks to this transformation, we can eliminate expressions containing x0:

x1 = − b

2a
(6.55)

The obtained formula for x1 is the formula for a vertex of second order polynomial function (in this
case minimum). So in one step we are able to find the extremum of a function. As we can see, this
algorithm is very efficient whenever we face problems dealing with quadratic forms.

As we can see in the formula for Newton descent (6.52), to calculate the subsequent steps taken in each
iteration of the algorithm, we must be able to get the Hessian of the function. To be able to calculate
the Hessian of a function one must derive a partial derivative over xi and xj .

Hf (x) =

∂2f
∂x2

1
. . . ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n

To calculate the Hessian numerically, we need to use approximations of partial derivatives - finite differences.
They are denoted using the ∆ character. Therefore, the Hessian matrix using said approximations would

MO Lecture 6: More local methods 6-3

look like this:

Hf (x) =

∆2f
∆x2

1
. . . ∆2f

∆x1∆xn

...
. . .

...
∆2f

∆xn∆x1
. . . ∆2f

∆x2
n

Keeping the formula for central difference in mind, we can write the single finite difference over xi as:

∂f

∂xi
(x) ≈ ∆f

∆xi
(x) =

f(x+ eih)− f(x− eih)

2h
(6.56)

Similarly, each entry of the Hessian matrix, being finite difference over xi and xj , would follow this formula:

∆2f

∆xi∆xj
(x) =

f(x+ eih+ ejh)− f(x+ eih− ejh)− f(x− eih+ ejh) + f(x− eih− ejh)

4h2
(6.57)

It is worth noting that the order in which approximations of partial derivatives are applied is not important.
If function f ∈ C2 (it is at least twice-differentiable), using Schwartz theorem we can prove that:

∆2f

∆xi∆xj
=

∆2f

∆xj∆xi
(6.58)

which also implies that:

Hf (x) = HT
f (x) (6.59)

Another thing to remember is that not from every function Hessian is easily obtainable (for example functions
that do not have curvature). To ensure correct flow of work of the algorithm, a certain trick must be used.
This trick comes down to adjusting Hessian of a function by adding to it diagonal matrix multiplied by small
λ value. This change should be applied whenever determinant of abs(Hf (x)) is smaller that some arbitrary
threshold t. Described method is often called Ridge Regression or Levenberg-Marquardt adjustment.

6.19.2 Newton-Raphson method

There is also another algorithm, similar to Newton descent, that is worth mentioning. It is called the Newton-
Raphson method (and sometimes just Newton’s method). This algorithm is a root-finding algorithm which
produces successively better approximations to the roots (or zeroes) of a given function. The formula used
by this algorithm is as follows:

xk+1 = xk −
f(xk)

f ′(xk)
(6.60)

Caution! This is a very similar formula to the formula used by Newton descent, but it differs in the degree
of derivatives of the function f . The two mentioned algorithms are trying to solve two different problems.
However, they share a common relation. The Newton-Raphson method finds the roots of the function that
will be given to it. Assuming that a given function is already a derivative of another function (considered
by the Newton descent algorithm), finding these roots basically gives us the formula for Newton descent and
solves the problems it addresses.

6-4 MO Lecture 6: More local methods

6.19.3 Implementation of the Newton descent algorithm

Using programming language R we can write a Newton descent implementation. First of all, we need
a function to calculate numerical Hessian matrix:

1 num_hessian <- function(f, x, h = 10^ -3){

2 #’ Numerical Hessian

3 #’

4 #’ @description Function responsible for determining the numerical Hessian

5 #’ by calculating the matrix of partial derivatives.

6 #’

7 #’ @param f function. The function which Hessian we determine

8 #’ @param x numerical vector. The point at which the numerical Hessian

9 #’ is determined

10 #’ @param h scalar. Finite difference value

11 #’

12 #’ @usage num_hessian(f, x)

13 #’

14 #’ @return Hessian matrix of partial derivatives of function f.

15

16 n <- length(x)

17 H <- matrix(NA , nrow = n, ncol = n)

18 E <- diag(n)

19

20 for(i in 1 : n) { # Rows

21 for(j in 1 : n) { # Columns

22 H[i, j] <- (

23 f(x+E[i,]*h+E[j,]*h) - f(x+E[i,]*h-E[j,]*h)

24 - f(x-E[i,]*h+E[j,]*h) + f(x-E[i,]*h-E[j,]*h)

25) / (4*h^2)

26 }

27 }

28

29 return(H)

30 }

Listing 25: Numerical Hessian implementation

The formula used in subsequent iterations of the Newton descent algorithm requires us to calculate the inverse
of the Hessian matrix. Fortunately, language R provides a ready-made solution to this problem in the form
of the solve() method.

1 my_fun <- function(x) 1/8*x[1]^2+x[2]^2

2 x0 <- c(3, 4)

3 solve(num_hessian(my_fun , x0)) # Returns the inverse of the Hessian matrix

Listing 26: Hessian solve() method example

Having the ability to calculate the inverse of the matrix, we can finally create the code necessary for the New-
ton descent algorithm. Example of it’s implementation can look like this:

1 newton_descent <- function(f, x, K = 100){

2 #’ Newton descent

3 #’

4 #’ @description Function performing the Newton descent algorithm.

5 #’

6 #’ @param f: objective function

7 #’ @param x: intial point

8 #’ @param K: maximum number of iterations

9 #’

10 #’ @returns

11 #’ List that contains following elements:

12 #’ * x_opt: optimal solution

MO Lecture 6: More local methods 6-5

13 #’ * f_opt: objective function value of optimal solution

14 #’ * x_hist: history of explored points

15 #’ * f_hist: history of objective function values

16 #’ * t_eval: running time of algorithm

17

18 start_time <- Sys.time()

19 results <- list(x_opt = x,

20 f_opt = f(x),

21 x_hist = matrix(NA , nrow = K, ncol = length(x)),

22 f_hist = rep(NA, K),

23 t_eval = NA)

24

25 results$x_hist[1,] <- x

26 results$f_hist [1] <- f(x)

27

28 for(k in 2: K){

29 # calculating gradient and hessian of a function f

30 G <- grad(f, x)

31 H <- num_hessian(f, x)

32

33 # using Ridge Regression to help solve situations

34 # where Hessian can not be calculated

35 if(abs(det(H)) < 10^(-3)) H <- H + diag(n)*10^(-3)

36

37 # description of the transition from point x_k to x_k+1

38 x_new <- x - solve(H) %*% G

39

40 # checking whether the new solution

41 # is the best so far

42 if(f(x_new) < results$f_opt){
43 results$x_opt <- x_new

44 results$f_opt <- f(x_new)

45 }

46

47 results$x_hist[k,] <- x_new

48 results$f_hist[k] <- f(x_new)

49

50 x <- x_new

51 }

52 # time difference between the end and start of the algorithm

53 results$t_eval <- Sys.time() - start_time

54 return(results)

55 }

Listing 27: Example Newton descent implementation

6-6 MO Lecture 6: More local methods

Example 19. Let f(x1, x2) =
1

8
(x1)

2 + (x2)
2 and xstart = (3, 4).

How Newton descent converges can be seen on the plot below (alongside with paths created by other
similar algorithms):

 2

 4

 4

 6

 6

 8

 8

 10

 10

 12

 12

 14

 14

 16

 16

−4 −2 0 2 4

−
4

−
2

0
2

4

Gadient descent
Steepest descent
Newton descent

Figure 6.22: Comparison of the paths obtained by the Newton descent and other similar algorithms on
function f in 2D space

We can see that Newton descent has a path that is significantly different from the other algorithms.
Steepest descent and gradient descent algorithms are moving orthogonal with regards to counter-plot.
Newton descent takes a much more direct route towards the global minimum of the function. It is
no longer going towards locally best direction. This behavior is caused by the fact that the function
f is quadratic.

 6

 8

 10

 12

 14

 16

 18

 20

 22

2.0 2.5 3.0 3.5 4.0 4.5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

● x0

Gadient descent
Steepest descent
Newton descent

Figure 6.23: Closeup of the paths obtained by the Newton descent and other similar algorithms

6-7

131890-S Optimization methods Winter 2024/2025

Lecture 7: Simulated Annealing
Daniel Kaszyński

7.20 Schaffer function

When working on optimization methods, it is a common practice to thoroughly test the algorithms we create.
Simple functions only provide us with the opportunity to evaluate our solutions to a certain extent. If we
want to assess the characteristics of optimization methods in more difficult cases, it is worth using more
complex functions.

There are many complex functions on which complicated optimization algorithms can be tested. The list of
sample test functions can be found, among others, on Wikipedia website.

One of the popular functions for testing optimization algorithms is the Schaffer function. It is expressed
using the following formula:

f(x1, x2) = 0.5 +
sin2(x2 − y2)− 0.5

[1 + 0.001(x2 + y2)]2
(7.61)

This function has a minimum at the point f(0, 0) = 0 and has values in the range < 0, 1 >.

x_seq x_
se

q

f_m
at

Figure 7.24: Schaffer function plot in 3D space.

7-1

https://en.wikipedia.org/wiki/Test_functions_for_optimization

7-2 MO Lecture 7: Simulated Annealing

On the plot of the function we can see that near the point (0, 0) there is a valley containing the global
extremum of the function. This valley takes the shape of an ”X” and is surrounded by drastic jumps in the
function values. The space behind these fluctuations is characterized by the occurrence of dips and rises in
the function values in a wave-like pattern. It is also worth noting that the wave contours lie almost parallel
to each other.

 0
.1

 0.1
 0.1

 0.1
 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0
.1

 0

.1

 0
.1

 0

.1

 0.1

 0.2

 0
.2

 0.2

 0
.2

 0.2

 0
.2

 0.2
 0.2

 0
.2

 0

.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2
 0.2

 0
.2

 0.2

 0
.2

 0.2

 0
.2

 0
.2

 0.2

 0.2

 0
.2

 0.3

 0.3

 0
.3

 0
.3

 0
.3

 0.3

 0
.3

 0.3
 0.3

 0.3

 0
.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0
.3

 0.3 0.3

 0.3

 0
.3

 0.3

 0
.3

 0

.3

 0
.3

 0.3
 0

.4

 0.4

 0
.4

 0
.4

 0.4

 0
.4

 0

.4

 0
.4

 0.4

 0
.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4
 0.4

 0
.4

 0.4

 0.4

 0
.4

 0.4
 0.4

 0.4

 0
.4

 0.4
 0

.5

 0
.5

 0.5

 0
.5

 0
.5

 0
.5

 0

.5

 0
.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0
.5

 0.5
 0.5

 0.5
 0.5

 0.5

 0
.5

 0.6

 0.6

 0
.6

 0
.6

 0.6

 0
.6

 0.6

 0
.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6 0.6

 0
.6

 0
.6

 0.6

 0.6

 0
.6

 0.6

 0
.6

 0.6

 0
.6

 0
.7

 0.7
 0.7

 0
.7

 0
.7

 0.7

 0.7
 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7 0.7

 0.7

 0
.7

 0
.7

 0.7

 0.7

 0
.7

 0

.7

 0
.7

 0
.8

 0
.8

 0.8

 0.8
 0.8

 0
.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0
.8

 0
.8

 0

.8

 0.8

 0
.8

 0
.9

 0.9
 0.9

 0
.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0
.9

 0

.9

 0
.9

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 7.25: Contour plot of Schaffer function.

This function is great for testing the ability of algorithms to explore different sections of the function space in
search of the global extremum. The Schaffer function has a diverse topography. Without proper exploration,
algorithms may get stuck in a local extremum. This may lead to suboptimal solutions that are not globally
best.

To avoid getting stuck in a local extremum, several different exploration techniques can be used. These
include, among others, stochastic methods, i.e. algorithms based on randomness, such as evolutionary
algorithms or genetic algorithms. Other methods may be multi-point methods, population methods or
adaptive exploration strategies.

7.21 Tests of local search algorithms

To begin with, it is worth determining how the optimization algorithms we learned in previous lectures, such
as the gradient descent algorithm or the steepest descent method, behave on the Schaffer function.

Example 20. Let function f be the Schaffer function and starting point of the extremum search
xstart = (3, 4).

MO Lecture 7: Simulated Annealing 7-3

Moreover, let’s assume the following values as parameters of the gradient descent: learning rate
α = 0.02 and maximum iteration limit K = 30000. Similarly, in steepest descent method, assume
that maximum learning rate α = 5, number of iterations to search for the best learning rate g = 1000
and maximum iteration limit K = 30000.

When attempting to optimize the function from the starting point xstart using the gradient descent
algorithm and the steepest descent method, both of them approached the local extremum of the
function. The paths obtained in the subsequent iterations of these algorithms can be seen on the plot
below:

 0
.1

 0.1
 0.1

 0.1
 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0
.1

 0

.1

 0
.1

 0

.1

 0.1

 0.2

 0
.2

 0.2

 0
.2

 0.2

 0
.2

 0.2
 0.2

 0
.2

 0

.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0
.2

 0.2

 0
.2

 0.2

 0
.2

 0
.2

 0.2

 0.2

 0
.2

 0.3

 0.3

 0
.3

 0
.3

 0
.3

 0.3

 0
.3

 0.3
 0.3

 0.3

 0
.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0
.3

 0.3 0.3

 0.3

 0
.3

 0.3

 0
.3

 0

.3

 0
.3

 0.3

 0
.4

 0.4

 0
.4

 0
.4

 0.4

 0
.4

 0

.4

 0
.4

 0.4

 0
.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0
.4

 0.4

 0.4

 0
.4

 0.4
 0.4

 0.4

 0
.4

 0.4

 0
.5

 0
.5

 0.5

 0
.5

 0
.5

 0
.5

 0

.5

 0
.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0
.5

 0.5
 0.5

 0.5
 0.5

 0.5

 0
.5

 0.6
 0.6

 0
.6

 0
.6

 0.6

 0
.6

 0.6

 0
.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6 0.6

 0
.6

 0
.6

 0.6

 0.6

 0
.6

 0.6

 0
.6

 0.6

 0
.6

 0
.7

 0.7
 0.7

 0
.7

 0
.7

 0.7

 0.7
 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7 0.7

 0.7

 0
.7

 0
.7

 0.7

 0.7

 0
.7

 0

.7

 0
.7

 0
.8

 0
.8

 0.8

 0.8
 0.8

 0
.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0
.8

 0
.8

 0

.8

 0.8

 0
.8

 0
.9

 0.9
 0.9

 0
.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0
.9

 0

.9

 0
.9

−4 −2 0 2 4

−
4

−
2

0
2

4

Gadient descent
Steepest descent

Figure 7.26: The paths obtained by gradient descent and steepest descent algorithms on Schaffer function.

It is easy to notice that none of the algorithms managed to get out of the initial valley near the starting point
xstart. They moved very slowly and required a large number of iterations. Moreover, they became stuck
pursuing the local minimum of the function. This phenomenon is known as the local extremum trap. Based
on this knowledge, it can be concluded that gradient descent and steepest descent do not have global search
properties. In the case of functions such as the Schaffer function, it is worth introducing escape mechanisms
that allow algorithms to searching other regions.

7.22 Simulated Annealing

Simulated annealing is a probabilistic optimization algorithm inspired by the annealing process in metallurgy.
In metallurgy, annealing is a technique used to reduce defects and improve the crystal structure of materials
by heating them and then gradually cooling them. Similarly, in the context of optimization, simulated
annealing is used to find the global minimum of a function by imitating a stepwise cooling process.

7-4 MO Lecture 7: Simulated Annealing

The first step of the simulated annealing algorithm is its initialization. In this phase, the starting parameters
of the algorithm are set, which include:

• f - considered target function,

• x0 - starting point of the algorithm,

• d - neighbourhood,

• t0 - starting temperature,

• α - temperature drop rate,

• K - number of iterations of the algorithm,

and internal parameters such as:

• Ak - value of the activation function,

• tk - temperature in each iteration.

Simulated annealing uses a temperature parameter that controls the likelihood of worse solutions being
chosen as the algorithm progresses. Initially, the temperature is set to a high value and is gradually reduced
in subsequent iterations, in accordance with the adopted annealing strategy.

In each iteration of the algorithm, an neighbor solution is generated. This is a potential candidate obtained
by making a small random change to the current solution within neighborhood d. This is followed by an
evaluation of the target function for the current solution and the neighboring solution. If the neighboring
solution is better (i.e. has a lower target function value), it is accepted as the new, current solution. If
the neighbor’s solution is worse, it can be accepted with a probability given by the activation function Ak

and the current temperature tk. This activation (or probability) function allows the algorithm to sometimes
accept worse solutions at the beginning of the optimization process, which helps prevent the algorithm from
getting stuck in local minima. Then the temperature is lowered in accordance with the adopted strategy.
As the temperature decreases, the probability of adopting worse solutions decreases and the probability of
the algorithm convergence towards the global minimum increases. These steps are repeated in subsequent
iterations until the stopping criterion is met, which may be reaching the maximum number of iterations or
reaching a satisfactory solution.

Simulated annealing is effective in finding near-optimal solutions to complex optimization problems where
traditional gradient-based methods can be problematic, especially when the objective function is non-convex
or noisy. By allowing the algorithm to occasionally accept inferior solutions, simulated annealing can explore
a wider range of the solution space and avoid getting trapped in local minima.

Using the R programming language, we can write our own implementation of the simulated annealing algo-
rithm. An example implementation of this method might look like this:

1 simulated_annealing <- function(f, x0, d, t0, a, K = 100){

2 #’ Simulated Annealing

3 #’

4 #’ @description The function responsible for approximating the global extremum

5 #’ for the function f in K steps using the simulated annealing algorithm.

6 #’

7 #’ @param f function. The target function for the algorithm.

8 #’ @param x0 numerical vector. The starting point for the algorithm.

9 #’ @param d scalar. Considered neighborhood.

10 #’ @param t0 scalar. Initial temperature.

11 #’ @param a scalar. A parameter that determines the rate of temperature decline.

12 #’ @param K scalar. Optional parameter that determines maximum iteration limit (defaults

to 100).

MO Lecture 7: Simulated Annealing 7-5

13 #’

14 #’ @usage simulated_annealing(f, x0, d, t0, a, K)

15 #’

16 #’ @returns

17 #’ List of various outputs containing the following:

18 #’ * x_opt: found solution ,

19 #’ * f_opt: value of target function in the found solution ,

20 #’ * x_hist: history of explored solutions ,

21 #’ * f_hist: history of target function values ,

22 #’ * t_eval: time elapsed during algorithm calculations.

23

24 start_time <- Sys.time()

25 n <- length(x0)

26 results <- list(x_opt = x0,

27 f_opt = f(x0),

28 x_hist = matrix(NA , nrow = K, ncol = n),

29 f_hist = rep(NA, K),

30 A_k = rep(NA, K),

31 t_k = rep(NA, K),

32 t_eval = NA)

33

34 results$x_hist[1,] <- x0

35 results$f_hist [1] <- f(x0)

36

37 x <- x0

38 t_k <- t0

39 for(k in 2: K){

40 # choice of a next solution from the neighborhood

41 x_c <- x + runif(n, min = -d, max = d)

42 A_k <- min(1, exp(-(f(x_c) - f(x)) / (t_k)))

43

44 # checking whether the new solution

45 # should be accepted as new

46 # and if it is the best so far

47 if(runif (1) < A_k){

48 x <- x_c

49 if(f(x) < results$f_opt){
50 results$x_opt <- x

51 results$f_opt <- f(x)

52 }

53 }

54

55 results$x_hist[k,] <- x

56 results$f_hist[k] <- f(x)

57

58 results$A_k[k] <- A_k

59 results$t_k[k] <- t_k

60

61 t_k <- t_k*a

62 }

63

64 # time difference between the end and start of the algorithm

65 results$t_eval <- Sys.time() - start_time

66 return(results)

67 }

Listing 28: Simulated annealing algorithm implementation

It is worth noting that the runif() function was used to select the neighboring solution from the neighborhood.
This function provides random variations according to a normal distribution within the specified range from
min to max.

Example 21. Let function f be the Schaffer function and starting point of the extremum search
xstart = (3, 4).

7-6 MO Lecture 7: Simulated Annealing

Moreover, let’s assume the same values as in the previous example for the gradient descent and
steepest descent algorithms , except that the maximum iteration is reduced to 2000. Let us also
assume that the simulated annealing algorithm takes the parameters d = 0.8, t0 = 100, α = 0.99
and the maximum iteration limit K = 2000.

When trying to optimize the function from the starting point xstart using the simulated annealing
algorithm, we can see that it explores different regions of the considered function. It does not stop
at local minima and even leaves the local extremum in order to investigate further values, that have
potential to be global extremum. The paths obtained in the subsequent iteration steps of these
algorithms can be seen in the plot below:

 0
.1

 0.1
 0.1

 0.1
 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0.1

 0
.1

 0

.1

 0
.1

 0

.1

 0.1

 0.2

 0
.2

 0.2

 0
.2

 0.2

 0
.2

 0.2
 0.2

 0
.2

 0

.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0
.2

 0.2

 0
.2

 0.2

 0
.2

 0
.2

 0.2

 0.2

 0
.2

 0.3

 0.3

 0
.3

 0
.3

 0
.3

 0.3

 0
.3

 0.3
 0.3

 0.3

 0
.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0.3

 0
.3

 0.3 0.3

 0.3

 0
.3

 0.3

 0
.3

 0

.3

 0
.3

 0.3
 0

.4

 0.4

 0
.4

 0
.4

 0.4

 0
.4

 0

.4

 0
.4

 0.4

 0
.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0
.4

 0.4

 0.4

 0
.4

 0.4
 0.4

 0.4

 0
.4

 0.4
 0

.5

 0
.5

 0.5

 0
.5

 0
.5

 0
.5

 0

.5

 0
.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0.5

 0
.5

 0.5
 0.5

 0.5
 0.5

 0.5

 0
.5

 0.6

 0.6

 0
.6

 0
.6

 0.6

 0
.6

 0.6

 0
.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6 0.6

 0
.6

 0
.6

 0.6

 0.6

 0
.6

 0.6

 0
.6

 0.6

 0
.6

 0
.7

 0.7
 0.7

 0
.7

 0
.7

 0.7

 0.7
 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7 0.7

 0.7

 0
.7

 0
.7

 0.7

 0.7

 0
.7

 0

.7

 0
.7

 0
.8

 0
.8

 0.8

 0.8
 0.8

 0
.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0
.8

 0
.8

 0

.8

 0.8

 0
.8

 0
.9

 0.9
 0.9

 0
.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0.9

 0
.9

 0

.9

 0
.9

−4 −2 0 2 4

−
4

−
2

0
2

4

Gadient descent
Steepest descent
Simulated annealing

Figure 7.27: Path created by simulated annealing algorithm in comparison to gradient descent and steepest
descent on Schaffer function.

During subsequent iterations of the algorithm, the value of the temperature parameter tk gradually decreases.
This reduces the randomness that occurs in the algorithm’s search behavior and focuses it on the best solution
found so far. Over time, the algorithm stops focusing on exploring new values and tries to optimize the best
existing solution. The temperature drop in subsequent iterations of the algorithm can be seen in the plot
below:

ex: steepest_descent_vs_gradient

MO Lecture 7: Simulated Annealing 7-7

●●●

0 500 1000 1500 2000

0
20

40
60

80
10

0

Iteration

Te
m

pe
ra

tu
re

Figure 7.28: Plot of temperature values over subsequent iterations of the algorithm.

It is also worth taking a look at the values of the activation function in each of iterations of the algorithm.
They decrease over the course of the algorithm’s operation from values close to 1 to values close to 0. We
can see the values of the activation function in the plot below:

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●
●●
●
●●●●●
●
●
●
●
●●●
●
●●●
●
●●●
●
●
●
●
●
●●●●●
●
●●●
●
●●
●
●●
●
●
●
●●
●
●●●●●
●●●●
●●
●
●

●

●●●●●

●

●
●
●
●
●●●●
●

●

●
●
●
●
●●●●●●●●
●●●●●

●

●●●●
●

●

●●
●
●●
●
●

●

●●●

●

●
●
●●●
●●
●●●
●
●
●
●●

●

●●●
●
●●

●

●

●

●●

●

●●

●

●●
●
●

●●●●
●
●

●

●●
●
●

●

●●●●

●

●●●
●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●●●●
●

●

●
●●●

●●●●

●

●●●

●

●
●
●
●
●●

●

●
●

●

●

●

●●

●

●●

●

●●●●

●

●
●

●

●
●●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●●●
●●●
●●●●●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●●
●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●
●●●●

●

●●

●●

●

●

●●●●●

●

●●●●●

●

●●

●

●●●●●●
●
●●●

●
●

●●●●

●

●

●

●

●●●●

●

●●
●
●●●

●

●

●●●●●●●

●

●●●●●●

●

●●

●

●
●●
●
●●

●

●●●●●

●

●

●

●

●

●●●●

●

●●●●●●●

●

●

●●●

●

●●●●●●●●●●
●
●

●

●●

●

●●●●●

●

●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●●●●●●●●●●
●
●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●
●
●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

A
ct

iv
at

io
n

fu
nc

tio
n

Figure 7.29: A plot of the activation function values over subsequent iterations of the algorithm.

7-8 MO Lecture 7: Simulated Annealing

When searching for a solution, we can distinguish three phases. They are easy to observe on the activation
function plot. At the beginning, the activation function has large values (approximately up to 200-300
iterations). This means that the algorithm often accepts considered candidates for the optimal x, even if
the values of the target function are not desirable in their case. Then comes the second phase, in which
good solutions have a high probability of acceptance and poor solutions have a low probability of acceptance
(approximately up to 1000-1200 iterations). The last phase is the phase in which the behavior of the switch
model is adopted - better solutions take the value of 1, and worse ones take 0. High values occur much less
often because it is harder to find a better solution the longer the algorithm runs, because there is less chance
of improving the result.

The mentioned three phases that are characteristic to this algorithm are also reflected by values of the target
function obtained during the operation of the algorithm. A plot showing these values is provided below:

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

Ta
rg

et
 fu

nc
tio

n

Random walk Biased search Gready search

Figure 7.30: Plot of the targt function values over subsequent iterations of the algorithm.

Similarly as in the case of the activation function, three phases of the algorithm’s operation are also visible. At
the beginning, the values of the target function assume values scattered from the minimum to the maximum
of the function, because almost all solutions encountered were accepted. Then the frequency and intensity
of jumps in function value decreased and were no longer so drastic. In the final phase, the target function
values stabilized and were slowly reduced.

The simulated annealing algorithm is very sensitive to the definition of the neighborhood. It’s accuracy
depends largely on the correct selection of starting parameters. Furthermore, it suffers from the curse of
dimensionality present in optimization problems. As the number of dimensions of the functions we work
on increase, the probability of choosing the correct direction when analyzing a random neighboring solution
decreases significantly. This reduces the effectiveness of the algorithm for multidimensional problems.

Simulated Annealing is a stochastic algorithm because a different path is created each time the algorithm is
run. This is a basic metaheuristic method.

7.23 Introduction to population methods and genetic algorithms

The simulated annealing algorithm is a good introduction to population algorithms. Their purpose is to
increase the effectiveness of the algorithms by performing several runs of the algorithms with different
starting parameters. A larger number of runs in the case of algorithms containing randomness increases
the chance of obtaining the correct result. Additionally, individual runs of the algorithms can share some
information, which will further increase their chances of finding the extreme of the function.

Population methods in optimization problems is an approach in which solutions are represented as indi-
viduals in a population. These individuals are subject to a process of improvement, often through genetic
processes inspired by biological evolution. The primary goal of these algorithms is to find the optimal solution
in the search space by exploring and exploiting potential areas.

The most popular population methods include:

• Genetic algorithms that are based on the mechanisms of genetic inheritance, mutation and crossovers,

• Evolutionary strategies, which focus on evolving solutions by modifying their strategies rather than
specific genotypes,

• Swarm algorithms (Particle Swarm Optimization), which are based on the swarm model, where solu-
tions are represented by particles, and the optimization process involves adjusting the movement of
particles in the search space based on their experiences.

All these methods have common inspiration from evolutionary processes, and their effectiveness depends on
appropriate adjustment of parameters and problem representation. Population algorithms are often used
to solve optimization problems in various fields, such as engineering, life sciences, finance, and artificial
intelligence.

7-9

131890-S Optimization methods Winter 2024/2025

Lecture 8: Introduction to discrete optimization
Daniel Kaszyński

8.24 Introduction to discrete optimization

Discrete optimization is a field that deals with problems where at least one of the variables takes on discrete
values. These problems are ubiquitous and can be encountered in various areas, including:

1. Logistics - managing the time needed for unloading, loading, verification, and transportation of goods,
as well as route planning,

2. Energy management - adjusting energy production based on demand,

3. Scheduling - planning schedules for students and lecturers, determining who, when, with whom, and
where.

4. Sports game schedules - planning game schedules, including who plays, when, at which stadium,
considering audience attendance and broadcast time to maximize profits.

Discrete optimization problems are typically NP problems (nondeterministic polynomial). These are the
problems for which the time required to find the optimal solution increases exponentially with the number
of elements. Thus, we can quickly find solutions only for small problems, but these are often too small to
meet our needs in the real world.

This issue can be illustrated with a graph shown in Figure 8.31. The X-axis represents the number of
elements for a given problem, and the Y-axis represents the time needed to find the optimal solution. In an
ideal world, we would like to have an algorithm that solves the problem in a linear time. However, due to
the complex nature of the problem, the number of possible solutions grows nonlinearly.

In the NP-type problems, we can often determine at a glance whether a proposed solution is valid, but we
cannot easily ascertain if it is an optimal one due to the vast number of potential solutions. Given the
complexity of discrete problems, two main approaches are considered for solving them:

1. Shifting the exponential growth line - adjusting the growth of the time needed so that we can
solve larger problems before the solution time becomes a significant issue,

2. Finding approximate solutions - seeking solutions that are not optimal but provide satisfactory
results in a much shorter time.

To further explore discrete optimization problems, let’s take a closer look at specific optimization problems,
examining their complexity and possible approaches for solving them.

8.25 The knapsack problem

Imagine a situation where a thief breaks into an art museum intending to steal art and sell them for profit.
The thief brings a backpack, but it has a limited carrying capacity (ignore their dimensions for simplicity),

8-1

8-2 MO Lecture 8: Introduction to discrete optimization

Figure 8.31: Time required to solve a problem depending on the number of elements and computational
complexity

which means the thief cannot take all the artworks. Therefore, the thief must decide which items to choose
in order to take the most valuable artworks that will fit in the backpack and yield the highest profit.

Let’s formalize the problem mathematicaly: we have a set of all available items in the museum I =
(i1, i2, . . . , in). Each item has its own value and weight ii = (vi, wi). We also have the maximum car-
rying capacity of the backpack K and an additional decision variable x = (x1, x2, . . . , xn), where xi = 1 if
the item is placed in the backpack and xi = 0 otherwise. We can now describe the problem as an optimization
task aiming to maximize the value of the backpack considering its backpack capacity as a constrain:

max

N∑
i=1

vixi

s.t.

N∑
i=1

wixi ≤ K

xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , N}

(8.62)

This is a classic example of the Knapsack Problem, a fundamental problem in combinatorial optimization.
The goal is to choose the most valuable combination of items that fit within the given weight limit.

Before we move on to discussing approaches to solving this problem, it is important to consider how long
it would take to check all possible solutions, in other words conducting a thorough search. The decision
variable x can take the following values: (0, 0, . . . , 0), (0, 0, . . . , 1), . . . , (1, 1, . . . , 1). The number of all
possible combinations is related to the number of elements in the set I, and in this case, it is equal to 2|I|.
Assuming it takes one millisecond to check a single case, for a 50-element set |I| = 50, it would take 35677
years to check all possible cases. Therefore, we can see that such an approach must be ruled out as it is
practically infeasible.

In the following sections, we will consider approaches that utilize methods such as greedy search, dynamic
programming, and branch and bound to design dedicated optimization algorithms - heuristics that find
feasible solutions in significantly shorter times.

MO Lecture 8: Introduction to discrete optimization 8-3

8.26 Greedy search

Greedy search algorithms are a good strategy for finding an initial correct solution that meets the conditions
of an optimization problem. These algorithms conceptually build a solution to the problem in a very simple
and intuitive way. Generally, such algorithms may not be the most efficient, but they serve as a first step
toward a deeper understanding of the problem, which can later be useful when applying more sophisticated
optimization methods. Let’s examine the problem described by an equation (8.63):

x = (x1, x2, x3, x4, x5, x6, x7)

1x1 + 1x2 + 1x3 + 10x4 + 11x5 + 13x6 + 7x7

2x1 + 2x2 + 2x3 + 5x4 + 5x5 + 8x6 + 3x7 ≤ 10

(8.63)

We have 7 items at our disposal, first equation describes item assignment, second is the objective function
with assigned values of the items in dollars (1 dollar, 1 dollar, . . .), while the inequality contains the weights
of these items in kg (2kg, 2kg, . . .) along with the maximum load capacity of the backpack K = 10 kg. A
potential strategy for solving the problem could be to initially choose the heaviest items and then fill the
backpack so as not to exceed the maximum load:

x = (1, 0, 0, 0, 0, 1, 0)

1 ∗ 1 + 1 ∗ 0 + 1 ∗ 0 + 10 ∗ 0 + 10 ∗ 0 + 13 ∗ 1 + 7 ∗ 0 = 14

2 ∗ 1 + 2 ∗ 0 + 2 ∗ 0 + 5 ∗ 0 + 5 ∗ 0 + 8 ∗ 1 + 3 ∗ 0 = 10 ≤ 10

(8.64)

Let’s try a few other strategies. Let’s go with ”the more, the better” approach by filling the backpack with
the lightest items first:

x = (1, 1, 1, 0, 0, 0, 1)

1 ∗ 1 + 1 ∗ 1 + 1 ∗ 1 + 10 ∗ 0 + 10 ∗ 0 + 13 ∗ 0 + 7 ∗ 1 = 10

2 ∗ 1 + 2 ∗ 1 + 2 ∗ 1 + 5 ∗ 0 + 5 ∗ 0 + 8 ∗ 0 + 3 ∗ 1 = 9 ≤ 10

(8.65)

Changing the strategy resulted in not fully utilizing the available space in the backpack, and its value
decreased by 4 dollars.

The next strategy we will take requires additional calculations: we choose items with the highest value per
kg of weight, which means for item x1 we have value

weight = 1
2 . Let’s create an temporary list with the items

Cost Efficiency, which we will use to guide item selection:

CE =

[
1

2
,
1

2
,
1

2
, 2, 2, 1

5

8
, 2

1

3

]
(8.66)

Therefore, by selecting items based on their highest values from the list CE, we will choose sequentially
(x7, x4, x5, x6, x1, x2, x3). However, we must consider the backpack’s maximum weight capacity, as choosing
(x7, x4, x5) will exceed the 10 kg limit:

x = (1, 0, 0, 1, 0, 0, 1)

1 ∗ 1 + 1 ∗ 0 + 1 ∗ 0 + 10 ∗ 1 + 10 ∗ 0 + 13 ∗ 0 + 7 ∗ 1 = 18

2 ∗ 1 + 2 ∗ 0 + 2 ∗ 0 + 5 ∗ 1 + 5 ∗ 0 + 8 ∗ 0 + 3 ∗ 1 = 10 ≤ 10

(8.67)

8-4 MO Lecture 8: Introduction to discrete optimization

We managed to develop an even better strategy, but the question remains whether this is the best strategy.
It is easy to see that by selecting items x4 and x5, the backpack’s value is 20 dollars. How can we develop an
algorithm that allows us to achieve this result. But we should also ask ourselves: is this really the optimal
solution?

Let’s summarize greedy algorithms. We know that we can propose many different algorithms to solve a
given problem, some being more or less efficient than others. Greedy algorithms are simple in concept
and implementation and generally operate very quickly. However, they have a limitation - they do not
always find the optimal solution, and their effectiveness can vary based on the input data. Despite these
limitations, greedy algorithms are still useful for creating benchmarks and comparing the performance of
other optimization methods for a given problem.

8.26.1 Dynamic programming

Dynamic programming is a problem-solving technique that utilizes the approaches of divide and conquer
and bottom-up computation. In the divide and conquer approach, we break down the problem into smaller
subproblems and use them to find the optimal solution. Let’s denote the optimal solution by O(k, j), where
k ∈ [0,K] represents the optimal capacity of the backpack, and j ∈ [0, n] represents the optimal number of
items in the backpack. In this approach, instead of solving the problem for all n items at once, we solve it
for each successive j.

Let us assume we know how to solve O(k, j − 1) for all k ∈ [0,K], and we want to find out how to solve
O(k, j), which means adding item j to the backpack:

1. If the weight of the next item wj is greater than the k-th maximum load of the backpack then the best
solution is O(k, j − 1). This is because the item j does not fit given current capacity.

2. In the other case when wj ≤ k, we can consider two scenarios and select one that gives a better
outcome: (1) do not select the j-th item the best solution is O(k, j − 1). (2) select the j-th item the
solution is the value of an item j and optimal value of previously considered backpack with reduced
capacity by item j: vj +O(k − wj , j − 1).

Let us write this algorithm in the form of an equation (8.68):

O(k, j) =

{
max(O(k, j − 1), vj +O(k − wj , j − 1)) if wj ≤ k

O(k, j − 1) else
(8.68)

As we can see, it is a recursive equation that can be easily implemented in R, as shown in the code listing 29.
Note that the recursive problems require base case, which allows us to stop the computation if we cannot
reduce the problem any further. The base case here is specified for item idx==0, meaning that we don’t add
any items to the backpack (it has no value).

1 N <- 3 # maximum number of items

2 K <- 9 # maximum backpack capacity

3 # value and weight of following items

4 item_values <- c(5, 6, 3)

5 item_weights <- c(4, 5, 2)

6

7 O_ALG <- function(capacity , item_idx) {

8 # 0 as no item index -> no value

9 if (item_idx == 0) {

10 return (0)

11 }

MO Lecture 8: Introduction to discrete optimization 8-5

12

13 # select currently asked for item

14 value <- item_values[item_idx]

15 weight <- item_weights[item_idx]

16

17 # can we add the item to the backpack?

18 if (weight <= capacity) {

19 # select the maximum of

20 # 1. case where we don ’t add the item and consider another item

21 # 2. case where we add the item and consider another item

22 return(max(

23 O_ALG(capacity , item_idx - 1),

24 value + O_ALG(capacity - weight , item_idx - 1)

25))

26 }

27 # if not then check the next item

28 return(O_ALG(capacity , item_idx - 1))

29 }

30

31 cat(sprintf("Optymalna wartosc plecaka: %d\n", O_ALG(K, N)))

Listing 29: Knapsack problem recursive approach

Adopting such a recursive algorithm is computationaly inefficient approach. Those familiar with the recursive
implementation of finding the n-th element of the Fibonacci sequence know that the problem lies in repeated
calculating of the same values. This method is known as the top to bottom approach. To improve the
efficiency of the algorithm, we need to change the direction of execution and adopt the bottom-up approach.
Instead of starting from the j-th element downwards, we will now start from the zeroth element (no items in
backpack) and increase by one until we reach the N -th element. Let’s consider this with a simple example:

max 5x1 + 6x2 + 3x3

s.t. 4x1 + 5x2 + 2x3 ≤ 9
(8.69)

In dynamic programming we use a table that contains information about the optimal values of the backpack
for all possible configurations of k and j. This table has rows for K ∈ [0,K] capacities and columns for
j ∈ [0, N] items. The process of building subsequent columns of the table is shown in Figure 8.32. The first
column is initially filled with zeros because if no items are placed in the backpack, its value is zero.

In the second column, we consider placing the first item in the backpack. Using the decision rule describe
by equation (8.68), we know that for k < 4 we take the values from the previous column as we have no
room in smaller backpack. For k ≥ 4, we consider the equations in the form of max(O(k, 0), 5+O(k− 4, 0)).
In this case, the situation is simple because for each k, we take 5 + O(k − 4, 0), so filling in this column is
straightforward. Note that we no longer need to compute O(k, 0) and O(k − 4, 0) as we have their values
stored in a table.

Interesting things occur when we start filling the third column. Since the second item has a weight of
w2 = 5, for a backpack with a capacity of k = 4, the effective backpack is O(4, 1). But for k = 5, we
consider max(O(5, 1), 6 + O(5 − 5, 1)) = max(5, 6) = 6. Furthermore, for k = 9, the equation becomes
max(O(9, 1), 6 +O(9− 5, 1)) = max(5, 6 + 5) = 11, which is currently the highest backpack value.

We need to repeat the procedure one more time for the last column to gather all the necessary information.
The maximum value we can achieve in the backpack is 11. Interestingly, the highest value will always be in
the bottom right corner of the table.

The remaining question is which items should place in the backpack to achieve this value. In this case, we
know that it is i1 and i2 because we observed this while manually building the table. However, we can easily
verify this after building the table without storing all the information along the way.

8-6 MO Lecture 8: Introduction to discrete optimization

Figure 8.32: Dynamic programming table

Let’s take a closer look at Figure 8.69, which shows the complete table with summed up values. To determine
which items to place in the backpack, we need to trace back from the optimal basket to the empty one.
Starting from position O(9, 3), we check the position to the left, O(9, 2). If the value has not changed, it
means that we did not place item j in the backpack. Removing it from consideration does not change the
optimal value because it was not in the backpack so item i3 is not in the optimal backpack. Next, we compare
position O(9, 2) with O(9, 1), in this case, the value changed, indicating that removing item i2 affects the
optimal backpack value, so we know it must be in the backpack. In the next step, we do not start at O(9, 1)
but at O(9 − 5, 1), which accounts for weight of item i2. Comparing O(4, 1) with O(4, 0) tells us that item
i1 is placed in the backpack, achieving the optimal value. Thus, the optimal backpack contains items i1 and
i2.

Code listing 30 presents the implementation of the dynamic programming table algorithm for the knapsack
problem and finding the optimal value and contents of the backpack. It is important to note that this
algorithm is not without its drawbacks. Compared to the recursive implementation, it reserves memory
space for the table with all possible solutions, which can be a significant problem with a large number of
items and a high maximum backpack weight.

1 N <- 3 # maximum number of items

2 K <- 9 # maximum backpack capacity

3 # value and weight of following items

4 item_values <- c(5, 6, 3)

5 item_weights <- c(4, 5, 2)

6

7

8 get_dp_table <- function () {

9 # Builds a DP table and fills the entries

MO Lecture 8: Introduction to discrete optimization 8-7

Figure 8.33: Dynamic programming table - traceback

10 dp_table <- matrix(0, nrow = K + 1, ncol = N + 1)

11

12 # calculating the DP table

13 for (item in 1:N) {

14 value <- item_values[item]

15 weight <- item_weights[item]

16 # starting from the first item , can we add it?

17 for (capacity in 0:K) {

18 # check this condition for each possible capacity configuration

19 if (weight <= capacity) {

20 # if its possible to add it then get best possible case out of

21 # 1. not adding the item

22 # 2. adding the item

23 dp_table[capacity + 1, item + 1] <- max(

24 dp_table[capacity + 1, item],

25 value + dp_table[capacity - weight + 1, item]

26)

27 } else {

28 # if its not possible to add the item use last item best value function

29 dp_table[capacity + 1, item + 1] <- dp_table[capacity + 1, item]

30 }

31 }

32 }

33

34 return(dp_table)

35 }

36

37 # obtaining the optimal solution item configuration

38 solution_values <- function(dp_table) {

39 # Extracting information about optimal solution from the DP table

40 current_item <- N

41 current_capacity <- K

42 items_idx <- c()

43 total_value <- 0

44 total_weight <- 0

45

46 while (current_item != 0) {

47 # the item doesnt increase the value function move to the next item

48 if (dp_table[current_capacity + 1, current_item + 1] != dp_table[current_capacity + 1,

current_item]) {

49 # since there is a difference that means we should add the item to the backpack

50

51 # save its index and value , weight contribution

52 items_idx <- c(items_idx , current_item)

53 value <- item_values[current_item]

54 weight <- item_weights[current_item]

8-8 MO Lecture 8: Introduction to discrete optimization

55 total_value <- total_value + value

56 total_weight <- total_weight + weight

57

58 # reduce currently allowed capacity

59 current_capacity <- current_capacity - weight

60 }

61 # move to the next column where we consider adding next item

62 current_item <- current_item - 1

63 }

64

65 opt_val <- dp_table[K + 1, N + 1]

66 return(list(opt_val = opt_val , items_idx = sort(items_idx), total_value = total_value ,

total_weight = total_weight))

67 }

68

69 table <- get_dp_table()

70 solution_info <- solution_values(table)

71 print(solution_info)

Listing 30: Dynamic programing approach to knapack problem

8.26.2 Branch and bound

Branch and bound is a method for solving optimization problems by constructing a decision tree. An example
of decision tree for a knapsack with three items is shown in Figure 8.34. The state at the very top of the
tree, called the root and represents an empty backpack. The left branch of the tree considers scenarios with
the first item in the backpack, and the right branch without it. For these two nodes, we then consider adding
the second item to the backpack resulting in four new branches. Further, we consider adding the third item,
creating a total of 24 − 1 = 15 states representing all combinations along with intermediate states.

Figure 8.34: Decision tree for the knapsack problem

When the number of items |I| is too large, this approach becomes impractical, as it would be impossible to
check all possible scenarios. Therefore, we need to find a method for generating trees in a way that does
not search the entire tree, but make decisions at individual nodes to determine whether it is worthy further
exploration. Let’s break this problem down into two stages:

MO Lecture 8: Introduction to discrete optimization 8-9

1. branching - expanding the node of a tree into two nodes,

2. bounding - optimistic evaluation by relaxation the constraints of the optimization problem.

To understand the concepts of optimistic evaluation and relaxation, let’s consider a simple example. We
have three items i1 = (v = 45, w = 5), i2 = (v = 48, w = 8), and i3 = (v = 35, w = 3) with K = 10,
meaning we can never fit all items into the backpack, but we can take only i2 or i1 and i3. By removing the
constraint of the maximal load, our optimistic evaluation is the value 45+ 48+ 35 = 128. We can now start
searching the tree while keeping the future optimistic value in mind for each node, comparing and discarding
unprofitable branches.

Let’s consider the logic of such an algorithm with an example. Figure 8.35 shows the first two stages of
tree branching. At the root, we determine the current states, i.e., the backpack value as 0 (no iteams),
the remaining free space and the optimistic backpack value at current state. We expand the root into two
nodes: in one, item i1 goes into the backpack, and in the other, we reject it and update the node states. The
optimistic value of the nodes differs because right nodes x = (0, ?, ?), no longer include i1 in the optimistic
evaluation so 48 + 35 = 83 at best.

Let’s further expand node x = (1, ?, ?). We can see that in node x = (1, 1, ?), we exceed the maximum
load of the backpack, so we can immediately discard further exploration of this path as it will never yield a
correct solution. In the case of x = (1, 0, ?), the expected value decreases to 80. Further actions may differ
depending on the adopted tree search algorithm, but for now, let’s continue exploring node x = (1, 0, ?).

Figure 8.35: Tree branching 1

Further exploration of the tree is shown in Figure 8.36. After expanding node x = (1, 0, ?), we obtain case
x = (1, 0, 1), where the backpack value is the highest and equal to the optimistic value of 80. But we also
get a slightly worse solution, x = (1, 0, 0) with an optimal value 45.

Since in the relaxation approach we track the highest optimistic value, while browsing the tree, we see that
node x = (0, ?, ?) still potential offers a higher optimistic value than the current best solution (80 vs 83).
As this could potentially be a better solution, the algorithm continues to search the tree. We can discard
node x = (0, 0, ?) because, compared to the optimal solution, it is worse and would not yield a better result.
Expanding node x = (0, 1, ?) reveals another optimal solution, x = (0, 1, 0), which is worse than the current
best, and an infeasible solution x = (0, 1, 1) because it exceeds the backpack capacity.

Thus, we can see that the use of relaxation and optimistic value allowed us to reduce the size of the tree.
However, this result may be unsatisfactory, as we only reduced the tree by two nodes. Therefore, we could
find a better relaxation method, which can be crucial for the problems with large trees.

8-10 MO Lecture 8: Introduction to discrete optimization

Figure 8.36: Rozwijanie drzewa 2

An interesting example of such a rule might be breaking the discrete nature of the problem by allowing
fractional parts of items to be placed in the backpack. We can add the concept from the previously presented
greedy algorithm to sort items by their value

weight , and in the optimistic value, we fill the backpack with a fraction
of the item exceeding the load. In our example, this will change the initial optimistic value to:

CE =

[
45

5
,
48

8
,
35

3

]
=

[
9, 6, 11

2

3

]
w3 + w1 +

1

4
w2 = 10 ≤ 10

OptimisticV alue = v3 + v1 +
1

4
v2 = 35 + 45 + 12 = 92

(8.70)

In other words, we reparameterize the problem by introducing xi =
yi

vi
, which results in the following change

to the equations of the optimization problem:

max
∑
I

yi

s.t.
∑
I

wi

vi
yi ≤ K

yi ∈ [0, 1]

(8.71)

Such an approach means that after expanding the entire node x = (1, ?, ?) and returning to x = (0, ?, ?), we
will not continue expanding the tree because the optimistic value after excluding i1 is 35 + 7

8 · 48 = 77 (78
because we first place item i3 with a weight of 3 and fill the rest with i2 with a weight 8).

Beyond the importance of the relaxation method in tree search, we can also discuss approaches related to
tree traversal. Popular approaches include Depth-first search and Best-first search. The depth-first
search approach is the method we have discussed in the earlier example. In this approach, we first focus on
the left (or right) branches of the tree. Once we reach the end of a branch, we check the remaining branches
left behind. In the best-case scenario, we can complete the search after expanding only one branch.

MO Lecture 8: Introduction to discrete optimization 8-11

Best-first search works quite differently. In this algorithm, we expand the nodes with the currently highest
optimistic value. However, there is no simple answer as to which approach is better, and the time required
to solve the problem can varies based on the problem. Best-first search carries additional risk in situations
where the values of several items are infinitely large. In such cases, we might skip from node to node, almost
recreating the entire tree, while in the depth-first approach, we could terminate the search after traversing
one or more branches.

Listing 31 presents the implementation of the branch and bound algorithm using Depth-First search with a
simple relaxation that removes the constraint of the backpack’s maximum load.

1 N <- 3 # maximum number of items

2 K <- 9 # maximum backpack capacity

3 # value and weight of following items

4 item_values <- c(45, 48, 35)

5 item_weights <- c(5, 8, 3)

6

7 Node <- function(level , value , capacity) {

8 return(list(

9 level = level ,

10 value = value ,

11 capacity = capacity ,

12 items = c(),

13 opt_estimate = 0

14))

15 }

16

17 optimistic_value_estimation <- function(node) {

18 if (node$capacity > K) {

19 return (0)

20 }

21

22 estimate <- node$value
23 new_level <- node$level + 1

24

25 for (i in new_level:N) {

26 estimate <- estimate + item_values[i]

27 }

28

29 return(estimate)

30 }

31

32 DFS <- function () {

33 max_profit <- 0 # final backpack value

34 not_visited <- list() # stack of nodes

35 branching_count <- 0 # count of branched nodes

36 opt_items <- c() # optimal items solution

37

38 # defining root node

39 root <- Node(0, 0, 0)

40 root$opt_estimate <- optimistic_value_estimation(root)

41 not_visited <- append(not_visited , list(root) ,1)

42

43 while (length(not_visited) > 0) {

44 # extracting node from the stack

45 parent <- not_visited [[1]]

46 not_visited [[1]] <- NULL

47 cat(parent$level , parent$value , "\n")

48 branching_count <- branching_count + 1 # count number extended branches

49 # is the optimistic value of the parent node better than the current best node

50 if (parent$opt_estimate > max_profit) {

51 ### BRANCH LEFT , we consider adding item to the backpack

52 child <- Node(

53 parent$level + 1, # increase node level

54 parent$value + item_values[parent$level + 1], # value increases

55 parent$capacity + item_weights[parent$level + 1] # weight increases

56)

57 child$items <- c(parent$items , parent$level + 1)

58 child$opt_estimate <- optimistic_value_estimation(child)

59

60 # saving node optimistic value is better than current profit and doesn ’t exceed

backpack capacity

61 if (child$capacity <= K && child$value > max_profit) {

62 print(child$capacity)
63 max_profit <- child$value
64 opt_items <- child$items
65 }

66 # if the child optimistic value is greater we can branch it (DFS ADD ITEM AT THE

BEGINNING OF THE STACK)

67 if (child$opt_estimate > max_profit && child$level < N) {

68 not_visited <- append(list(child), not_visited , 1)

69 }

70

71 ### BRANCH RIGHT , don ’t add the item to the backpack

72 child2 <- Node(

73 parent$level + 1,

74 parent$value ,
75 parent$capacity
76)

77 child2$items <- parent$items
78 child2$opt_estimate <- optimistic_value_estimation(child2)

79

80 # saving node optimistic value is better than current profit and doesn ’t exceed

backpack capacity

81 if (child2$capacity <= K && child2$value > max_profit) {

82 max_profit <- child2$value
83 opt_items <- child2$items
84 }

85 # if the child optimistic value is greater we can branch it (DFS ADD , but allow

searching current branch first)

86 if (child2$opt_estimate > max_profit && child2$level < N) {

87 not_visited <- append(list(child2), not_visited , 2)

88 }

89 }

90 }

91

92 return(list(max_profit = max_profit , opt_items = opt_items , branching_count = branching_

count))

93 }

94

95 result <- DFS()

96 print(result)

Listing 31: Knapsack branch and bound algorithm

8-12

	Definition of extremum
	 Non-linear optimization without constraints in 1D. f:R R
	First Order Conditions f:RR
	Taylor's Theorem f:RR
	Second Order Conditions f:RR

	Non-linear optimization without constraints, multivariate case, f:Rn R
	First Order Conditions f:RnR
	Second Order Conditions f:RnR

	Properties of gradient
	 First Order Conditions, equality constraints
	Second Order Conditions, equality constraints
	First Order Conditions, inequality constraints
	Second Order Conditions, inequality constraints

	Linear programming
	Simplex algorithm
	Algorithm basics
	Simplex table
	Gaussian elimination algorithm
	Simplex algorithm implementation

	Finite differences
	Forward and backward differences
	Central difference

	Subtractive cancellation error
	Complex Step Derivative
	Comparison of the finite differences
	Automatic differentiation
	Directional derivative and partial derivative
	Kernel
	Optimality in multidimensional space
	Gradient descent
	Learning rate
	Gradient descent in neural networks
	Steepest descent
	Newton Descent
	Theory behind Newton Descent
	Newton-Raphson method
	Implementation of the Newton descent algorithm

	Schaffer function
	Tests of local search algorithms
	Simulated Annealing
	Introduction to population methods and genetic algorithms
	Introduction to discrete optimization
	The knapsack problem
	Greedy search
	Dynamic programming
	Branch and bound

