131890-S Optimization methods Winter 2023/2024

Lecture 1: Introduction to analytical optimization
Daniel Kaszyriski 6 October 2023 r.

Organisation

e Instructor: mgr Daniel Kaszynski, dkaszy|[@]sgh.waw.pl
e Consultation: Friday 12:00-13:00, G-213.

e Course grading: A written exam on the content presented in class or included in the materials

Example task: Describe method XYZ, show differences between ABC and XYZ, solve an analytical
optimization task, carry out two iterations of the XYZ method

e Required literature:

[KW19] Kochenderfer, M.J. and Wheeler, T.A., 2019. Algorithms for optimization. Mit Press.
[CZ04] Chong, E.K. and Zak, S.H., 2004. An introduction to optimization. John Wiley & Sons.

[BI86] Birkhole, A., 1986. Analiza matematyczna: funkcje wielu zmiennych. Panstwowe Wydawnictwo
Naukowe.

— [SS08] Sydsaeter, K., Hammond, P., Seierstad, A. and Strom, A., 2008. Further mathematics for
economic analysis. Pearson education.

— [CO14] Cortez, P., 2014. Modern optimization with R. New York: Springer.

1.1 Definition of extremum

Extremum is the central concept concerning the analytical optimization problem. The extremum z* is the
solution of the evaluation function f for which z* generates 'the best’ solution. Let’s consider a function
of one variable mapping from real to real values f : R — R.

Definition 1: Local extremum

By a local extremum (type minimum) we will call a point z* for which:

dd>0 VvOo<|i<]|d = [fl@*+9)>f(z") (1.1)

Definition 2: Global extremum

By a global extremum (type minimum) we will call a point z* for which:

Yd>0 Y5 >0 = f@*+0)> f(a*) (1.2)
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Figure 1.1: Local extremum of a function f: R — R

Notice that the difference between a local and global extremum is the area in which we obtain better solution
(from the point of view of the evaluation function). In case of a local extrema, we can point a neighborhood
around ,,;, in which we obtain worse solutions. The neighborhood for x,,;, might be very small, where as
for a global extremum ¥ . it’s any neighborhood around an extremum.

min

1.2 Non-linear optimization without constraints in 1D. f: R — R

The basic definition related to the non-linear optimization are related to the definition of derivative of a
function.

Definition 3: Derivative of a function

By a derivative of a function f : R — R we call a function:

d h) —
70) = fgte) = iy G = iy

f(z) = f(x —h)
e (1.1)

Continuity of a function f is a necessary condition for a function to be differentiable!

In an analogous way we can describe the second derivative of a function:

P/@) = T @) = (7 @)y = i TEFN T g, St 20) 221200 % T 1)

h—0 h—0 h?

(1.2)
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1.2.1 First Order Conditions f: R — R

Theorem 1 (First Order Conditions f : R — R)
Let f:DCR — R, feCL If a function f has an extremum at the point x € D, then f'(x) = 0.

Proof. If a function f has a minimum extremum at the point z, then there must exist |d| > 0,
such that for all 0 < |d| < |d|, we have f(z +J) > f(z), or f(x + &) — f(z) > 0. Dividing both
sides by a § we obtain:

fard)—f@) . fatd) - f@)
1 )

for § > 01 d < 0. Respectively at the limit § — 07 i 6 — 0~ we have:

<0

o fe+8) — f@) fw+6) ~ f(@)

= f > im &~ ~2 7 <
50+ 5 fel@) 20 A 50 § fo(z) <0
If a function f is differentiable then f'(z) = f/ (z) = f’ (x) = 0. O

First Order Conditions give us a way to filter solutions from the search space, to those where the first
derivative of a function is equal to zero (stationary points).

Caution! Just because a derivative of a function at the point x is equal to zero, doesn’t mean that it is an
extremum. For an example consider functions f(z) = 22 and f(x) = 5.

1.2.2 Taylor’s Theorem f:R — R

We will now introduce one of the most important theorem of mathematical analysis. The Fundamental
theorem of calculus states following;:

Theorem 2 (Fundamental theorem of calculus)

b
/ f(z) dz = F(b) — F(a) (1.3)

where F(x) is an anti-derivative or indefinite integral at point X. It means that the area under the curve
of a function f between points a and b we have to calculate: (1) the area under the curve from —oo to b,
(2) the area under the curve from —oo to a, (3) subtracting these values. Intuition behind equation (1.3) is
shown on Figure 1.1.

To simplify symbols let us assume that [ f/(z) dz = f(z), then we can rewrite (1.3) as:

b
£(b) — f(a) = / f(z) de (1.4)

Moving forward we will use symbols a = x b = x4+ h. We use point a as a starting point (or reference point),
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Figure 1.1: Definite integral

and point b as an offset by h from a. Notice that if we set h = 0 and start increasing it, then equation (1.4)
answers the question by how much the area under the function f increases.

x+h
fa+h) — f(z) = / f'(a) da

By rearranging this equation and bringing the indefinite integral to the beginning of a coordinate system (as
for now it was attached at the point z) we obtain:

h
flx+h) = f(x) +/0 f(z +a)da (1.5)

The equation (1.5) is important from the perspective of further transformations. We can see that z is
interpreted as a constant value (as the integral is on a). Also, the left side of the equation is in the similar
form of a function inside the integral. Let’s try to express the integral in terms of equation (1.5):

flz+h)=f(z)+ /Oh [f’(:c) + /Oa f”(x+b)db} da

Using the addition property of an integral:

flx+h)= f(z)+ /Oh f’(x)da+/0h [ Oa f”(x+b)db} da

We can try to express the first integral in the following form:

h
/0 f'(@)da = [f'(z)a]l = f'(z)h
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Which gives us:
h a
fl@+h)=f(z)+ f'(x)h+ / / F(x + b)db da
o Jo

Caution: The expression inside the double integral we can also express using the previously noticed property:

h a b
fa+h) = s+ F@hr [ [ @] [ ode| dbda

The inside of the double integral can be written as:

/Oh /Oa " (x)db da = /Oh [f" (z)b]g da = /Oh f"(z)a da = /Oh Bf”(x)aQL _ )2

Introducing this equation we obtain:

, 1 " h a b Y
flz+h)=f@)+ f@)h+5f (w)h2+/0 /0 /O (2 + ¢)de db da

The equation inside the integral is always worked out of equation 1.5. Such procedure can be performed
indefinitely (technically as many times as the function f is differentiable). In general this equation is given
as:

o £(n) (4
farm=3"7 n,( :

n=0

hn (1.6)

The qquation (1.6) is called as a Taylor’s equation. Notice that in practice we usually won’t differentiate f
infinitely many times. We will do it only few times that satisfies us with its accuracy. Thus we can write out
N-th expansions of a function using Taylor’s equation:

N—1
1 rpnin o S (@ + 0R)
flz+h) = f(z)+ Z:l Ef( )(z)h™ + N (1.7)
_ [N @ron) N . . .

where Ry(z,h) = ~————h" is the Lagrange remainder. We can show that, this remainder has the
following property:

. RN(QT,h)

W 0

Which means that the remainder Ry (z, h) of approximation using Taylor’s equation decreases to 0 at a rate
faster than the polynomial of N-th order.

Theorem 3 (Taylor’s equation f:R — R)
Let f:DCR — R and f € CN at every point of the segment [x,x + h]. Then for some 6 we have:

F™(z + 6h) Yy

N—-1 1
f@+h) = f(z) + Z:jl Al @R
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Taylor’s theorem is an important result that is often used in practice!

Expansion of a function using a Taylor’s series of 1st and 2nd order:
1
Fla+h) = @)+ f' @b+ 5 ()2

Using programming language R we can expand an example function into a Taylor’s series of 1st and 2nd
2
. _ oz,
order: f(z) = %
1 # Dane wejsciowe
> £ <- function(x) x"2/exp(x)
3 x0 <- 2.5
+ h_seq <- seq(0, 10, length = 100)

6 # Pochodne numeryczne
7 d1f <- function(f, x, h
s d2f <- function(f, x, h

10°-6) (f(x+h)-f(x))/h
10°-6) (f(x+2*h)-2*f(x+h)+f(x))/h"2

10 # Aproksymacja Taylora funkcji f wokol xO
11 taylor_1 <- function(f, x, h) f(x)+d1f(f, x)*(h-x)
12 taylor_2 <- function(f, x, h) f(x)+d1f(f, x)*(h-x)+1/2%d2f(f, x)*(h-x)"2

14 # Wykresy

15 plot(h_seq, f(h_seq), type=’1l’, col=’black’, xlab = ’x’, ylab = ’y’)
16 lines (h_seq, taylor_1(f, x0, h_seq), col=’red’)

17 lines (h_seq, taylor_2(f, x0, h_seq), col=’blue’)

18 legend (7.8, 0.55, legend=c(’f(x)’, ’taylor_1’, ’taylor_2’),

19 col=c(’black’, ’red’, ’blue’), lty=1, cex=1)

Listing 1: Example: expanding function into a Taylor’s series

0 — fx)

=3 — ftaylor_1
— ftaylor_2

= _|

a

o™

R

=2

o™

o

g

o

S -

Figure 1.2: Example: expanding function into a Taylor’s series
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1.2.3 Second Order Conditions f: R — R

We showed earlier that First Order Conditions are the required (each extremum has such property), but not
enough (points that are not extremas, but have such property). To if a stationary point has an extremum
we will use sufficient conditions — Second Order Conditions.

Theorem 4 (Second Order Conditions f : R — R)
Let f :DCR =R, f e C™ If for some z € D we get: f'(z) =0, f"(z) =0,...,f*V(z) =0, but for
f@™(x) £0, then:

1. If n is even, then function f has an extremum at the point x; If f(”)(x) > 0 then it is a minimum,
if £ (x) < 0 then it is a mazimum.

2. If n is odd, then function f doesn’t have an extremum at the point x.

Proof. From the Taylor’s equation, for some 0 < 8 < 1 we have:
n—1 1 1
- — £(k) kEy = () (n)
flx+h)= ,;:0 k!f (x)h" + (n)|f (x +6h)h

because f'(x) =0, f"(x) =0,..., f D (z) =0 then:

flz+h) = fx)+ %ﬂ”)(:p +0h)h"

Fla+h) — f(r) = - f) (a + om)n”

When 7 is even and £ (z) > 0 then due to parity of n we have h™ > 0. Due to continuity of
the function f(™) at the point 2 we know that for some ¢ > 0 such, that for each h: 0 < |h| <
we have f(")(x + h) > 0, due to that £ (x + 6h) > 0. What it means is that a function f has
in this point  a minimum. We can show analogously the maximum case. O

1.3 Non-linear optimization without constraints, multivariate case,
fR" >R

In the previous section we showed the optimization conditions in a one dimensional case — one decision
variable. However, the nature of optimization problems is more complicated and is multivariate.

We first have to introduce some basic terms from the area of differential calculus related to multiple variables.
We recommended to get familiar with early chapters of a textbook [BI86].
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Definition 4: Directional derivative

Let f:DCR®” =R, x € Dand h € R": z + h € D. Directional derivative of a function f at the point
z in direction h we call the function:

df . fl@tth) — f(z)
%(9«")—tg% P

Definition 5: Partial derivative

Let f:DCR” - R, ze€Dand heR":x+ h e D. Partial derivative of f at the point x with respect
to variable z;, i = 1,2,...n we call the function:

of
(93?1‘

_ar
_dei

(z) ()

where e; is the i-th versor of space R". Partial derivative of f with respect to z; is then a directional
derivative of f in direction of i-th versor, meaning that h = e;.

Definition 6: Gradient of a function

Let f: D C R™ — R, z € D. By a gradient of a function f we call function V¢(z) : R* — R™ at the
point f z:

V() = [§£<x>,§i<m>,...,£<x>]

Relation of directional derivative and gradient? If the gradient of a function V ;(x) exists at the point
x (which means that the function f is differentiable in x)

0 d
Vix) = [axfl,,ax];]

then directional derivative of a function f in direction of a vector h is equal to the dot product of a gradient
V¢(x) and vector h:

a _
dh ~

Vi(xlh)=Vy(x)xh
1.3.1 First Order Conditions f: R" - R

Theorem 5 (First Order Conditions f : R" — R)
Let f:DCR™ - R, f € CL If a function f has an extremum in point z, then Vs(z) =0
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Proof. Let’s consider a function g,(t) = f(z +th) and h € R” : x + h € D. Because f has an
extremum in z, then g has an extremum at ¢ = 0, then ¢’(¢) = 0, which means that ¢'(¢)|t=0 = 0.
As a result:

Example:

Let’s consider a function f(z) = 22 + 2. Find extremum of f(x).

Vi(z) = [aajl(as), 8852(33)} = [2z1,232] = 0 = [z1, 2] = [0, 0]

1.3.2 Second Order Conditions f: R"” — R

To derive Second Order Conditions for a multivariate function we have to introduce a generalization of a
second derivative of a function, namely Hessian matrix.

Definition 7: Hessian matrix

Let f:D C R™ — R, x € D. By a Hessian matrix Hy(z) we call a matrix:

2%f *f
Ox? N s r
Hy(z) = : . :
9% f 8% f
00T te oz2

Caution! Hessian matrix, is a symmetric matrix only, when all second order partial derivatives are continuous
2 2
(Schwarz’s theorem). Which means that: Of — _OFf
Ox;0x; Ox;0x;

Also, the previously introduced Taylor’s equation for a one dimensional case, can be redefined for the mul-
tivariate case:

Theorem 6 (Taylor’s theorem f : R" — R)
Let f:DCR™ - R and f € C? in each point of a section [x,x + h]. Then:

flx+h) = f(z) + V(@)h + %hTHf(x)h + R(x,h)

Theorem 7 (Second Order Conditions f : R” — R)
Let f:DCR™ >R, f e C?% If in z* we have both:

1. Vf(x*) =0



1-10 MO Lecture 1: Introduction to analytical optimization

2. Hf(l‘*) >0

Then w x* is a local minimum of f.

Proof. From the Taylor’s theorem for R™ we have:

Fla+h) = F@) + Vs @)h -+ SHTH )+ ol %) = f(z) + 5hHy()h + of|bf?)

where f(z+h)— f(z) = $hTHy(z)h+ o(|h|?). From the Rayleigh’s theorem, value of a quadratic
form KT Hy(x)h can be bounded from below by a Apin|h|*:

flx+h)—f(z) = %hTHf(a:)h +0(|h*) = S Aminlh* + o(|h[?)

DN | =

For small enough h we get f(z 4+ h) — f(z) >0 O

What is left is to tell what happens when Hy(z*) > 07

Theorem 8 (Sylvester’s criterion)
Let A be a symmetric real values matrix:

ai1 1.2 coo a1,n
as 1 @22 coo a2.n
an,1  Qp2 coo QAp n

s

We can define first minors of a matrci A as:

ai,i 1.2 0oo a1,n

as 1 as o 0oo as n
ay1 a1 ) ’ ’
M, =a;, M= det ) 2 ... M, =det A _ ,
a1 a2 . . .. :

an,1  QAp.2 coo An,n

Then:

1. Matriz A is positively defined if and only if all first minors M; of A are positive.

2. Matrixz is negatively defined if and only if all even first minors M; of A are positive, and all odd
minors M; are negative.

Example:

Let f(x) = 22 + 3. Find extrema of f(z):
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First Order Conditions:

Vi(z) = [aajl(x), 5;;(3:)} = [221,225]) =0 = [z1,22] = [0,0]

Second Order Conditions:

er 2 2 0
ox2 Ox10x

mon=| 5 TR =5 5]
89026:131 8m§

The f(z) function has only one extremum, which is [0, 0] — minimum.
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