131890-S Optimization methods

Winter 2023/2024

Lecture 2: Analytical optimization with constraints

Daniel Kaszyński 02 November 2023 r.

2.1 Properties of gradient

We have already introduced the concept of the gradient of a function – which is a vector of partial derivatives. Gradient will be quite often used as part of a lecture, which is why we should consider its properties. As a remainder:

Definition 1: Gradient

Let $f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{D}$. Through a gradient of function f, we call function $\nabla_f(x): \mathbb{R}^n \to \mathbb{R}^n$ at point x:

$$\nabla_f(x) = \left[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x) \right]$$

Remember that:

Relationship between Directional Derivative and Gradient? If the gradient of a function exists $\nabla_f(\mathbf{x})$ at point \mathbf{x} (which means that f is differentiable in \mathbf{x})

$$\nabla_f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right]$$

then directional derivative of a function f in direction of a vector \mathbf{h} is equal to the dot product of the gradient ∇f and vector \mathbf{h} .

Theorem 1: Gradient is the direction of the fastest growth.

Proof. Let |h| = 1, i.e. let it be a normalized vector. Then the growth rate of a function f at point x in direction h is given by a directional derivative $\frac{df}{dh}(x)$. Let us determine then a direction h, which maximizes the growth rate of a function f, i.e. direction which maximizes the directional derivative:

$$\frac{df}{dh}(x) = \nabla_f(x)h = |\nabla_f(x)||h|cos(\nabla_f(x), h) = |\nabla_f(x)|cos(\nabla_f(x), h)$$

for $|\nabla_f(x)| \ge 0$ and $\cos(\nabla_f(x), h) \in [-1, 1]$ the growth rate of f is the greatest when $\cos(\nabla_f(x), h) = 1$, which implies that h points in the same direction that $\nabla_f(x)$ is. As a result $h = \frac{\nabla_f(x)}{|\nabla_f(x)|}$.

Theorem 2: Gradient is orthogonal to the level set of the function.

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}$, $x^* = (x_1^*, \dots, x_n^*)$ and $\nabla_f(x^*) \neq 0$. Let $r: \mathbb{R} \to \mathbb{R}^n$ so that $r(t_0) = x^*$. Value of the function is constant for all points from a chosen level set (according to the definition) and $\forall_{t \in \mathbb{R}} f(r(t)) = c$. Then $\frac{d}{dt}(f(r(t))) = \nabla_f(r(t)) \frac{dr}{dt}(t) = 0$. In particular $\nabla_f(r(t_0)) \frac{dr}{dt}(t_0) = 0$.

Because $\frac{dr}{dt}(t_0)$ is a tangent space to the level set of a function f at x^* , it implies that $\nabla_f(x^*)$ is orthogonal to the level set.

2.1.1 First Order Conditions, equality constraints

Theorem 3: Lagrange theorem, Lagrange multipliers.

Let $f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$. If function f has an extremum at x related to h(x) = 0, where $h: \mathbb{R}^n \to \mathbb{R}^m$, $h \in C^1$, at point x, then

$$\nabla_f(x) + \lambda^T \mathbf{D} h(x) = \mathbf{0}$$

For $h: \mathbb{R}^n \to \mathbb{R}$.

$$\nabla_f(x) + \lambda \nabla_h(x) = \mathbf{0}$$

Example 1. Let $f(x) = x_1^2 + x_2^2$, and $[x_1, x_2] : h(x) = x_1^2 + 2x_2^2 - 1 = 0$. Find the extremum of f(x) related to h(x) = 1.

From First Order Conditions (FOC) we get:

$$\begin{cases} 2x_1 + \lambda 2x_1 = 0 \Rightarrow x_1(1+\lambda) = 0 \\ 2x_2 + \lambda 4x_2 = 0 \Rightarrow x_2(1+2\lambda) = 0 \end{cases}$$

Which gives us 4 solutions:

1.
$$[x_1, x_2] = \left[0, \frac{1}{\sqrt{2}}\right], \lambda = -\frac{1}{2}$$

2.
$$[x_1, x_2] = \left[0, -\frac{1}{\sqrt{2}}\right], \lambda = -\frac{1}{2}$$

3.
$$[x_1, x_2] = [1, 0], \lambda = -1$$

4.
$$[x_1, x_2] = [-1, 0], \lambda = -1$$

Figure 2.1: First Order Conditions equality constraints visualized

2.1.2 Second Order Conditions, equality constraints

Theorem 4: Second Order Conditions of Lagrange theorem.

Let $f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, $h \in C^2$. Let there be x and λ such that:

1.
$$\nabla_f(x) + \lambda^T \mathbf{D} h(x) = 0$$
, and

2.
$$\forall_{z \in T(x), z \neq 0}$$
 we have $z^T H_{L(x)} z > 0$

Then by point x we call minimum of a function f, related to h(x) = 0. T(x) we call tangent space, i.e.: $T(x) = \{z \in \mathbb{R}^n : z^T \mathbf{D} h(x) = 0\}$. In a case when m = 1, we have $T(x) = \{z \in \mathbb{R}^n : z^T \nabla_h(x) = 0\}$

Example 2. Lets consider 4 solutions that we have found from FOC:

1.
$$[x_1, x_2] = \left[0, \frac{1}{\sqrt{2}}\right], \ \lambda = -\frac{1}{2}$$

$$z: z^T \nabla_h(x) = [z_1, z_2][2x_1, 4x_2]^T = [z_1, z_2] \left[0, \frac{4}{\sqrt{2}}\right] = 0$$

$$z_10 + z_2 \frac{4}{\sqrt{2}} = 0 \Rightarrow \mathbf{z} = [\alpha, 0]$$

$$[\alpha, 0]^T H_f([x_1, x_2])[\alpha, 0] = [\alpha, 0]^T \begin{bmatrix} 2 + 2\lambda & 0 \\ 0 & 2 + 4\lambda \end{bmatrix} [\alpha, 0] = [\alpha, 0]^T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} [\alpha, 0] = \alpha^2 > 0$$

2.
$$[x_1, x_2] = \left[0, -\frac{1}{\sqrt{2}}\right], \lambda = -\frac{1}{2}$$

3.
$$[x_1, x_2] = [1, 0], \lambda = -1$$

$$z: z^T \nabla_h(x) = [z_1, z_2][2x_1, 4x_2]^T = [z_1, z_2][1, 0] = 0$$

$$z_1 1 + z_2 0 = 0 \Rightarrow \mathbf{z} = [0, \alpha]$$

$$[0,\alpha]^T H_f([x_1,x_2])[0,\alpha] = [0,\alpha]^T \begin{bmatrix} 2+2\lambda & 0 \\ 0 & 4+\lambda \end{bmatrix} [0,\alpha] = [0,\alpha]^T \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} [0,\alpha] = -2\alpha^2 < 0$$

4.
$$[x_1, x_2] = [-1, 0], \lambda = -1$$

2.1.3 First Order Conditions, inequality constraints

Theorem 5: KKT (Karush-Kuhn-Tucker) conditions.

Let $f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$ be an objective function, and let $h: \mathbb{R}^n \to \mathbb{R}^m$, $h \in C^1$ and $g: \mathbb{R}^n \to \mathbb{R}^p$, $g \in C^1$ be the constraints. If x is an extremum then there exists a pair of $\lambda = (\lambda_1, \ldots, \lambda_n)$ oraz $\mu = (\mu_1, \ldots, \mu_n)$ such that:

- 1. Stationarity condition: $\nabla_f(x) + \sum_{i=1}^m \lambda_i \nabla_{h_i(x)} + \sum_{i=1}^p \mu_i \nabla_{g_i(x)} = 0$
- 2. **Primal feasibility**: $\forall_{i=1,\dots,m} h_i(x) = 0$ and $\forall_{i=1,\dots,p} g_i(x) \leq 0$
- 3. **Dual feasibility**: $\forall_{i=1,\ldots,p}\mu_i \geq 0 \leftarrow for\ minimum$
- 4. Complementary slackness: $\forall_{i=1,...,p}\mu_i g_i(x) = 0$

Example 3.
$$f(x) = x_1^2 + x_2^2$$
 constrained by $[x_1, x_2] : g(x) = x_1^2 + 2x_2^2 - 1 \le 0$

From FOC we have:

$$[2x_1, 2x_2] + \mu[2x_1, 4x_2] = 0$$

$$\begin{cases} 2x_1 + \mu 2x_1 = 0 \Rightarrow x_1(1+\lambda) = 0 \\ 2x_2 + \mu 4x_2 = 0 \Rightarrow x_2(1+2\lambda) = 0 \end{cases}$$

Which gives 4 solutions:

1.
$$[x_1, x_2] = \left[0, \frac{1}{\sqrt{2}}\right], \mu = -\frac{1}{2}$$
 Dual feasibility

2.
$$[x_1, x_2] = \left[0, -\frac{1}{\sqrt{2}}\right], \mu = -\frac{1}{2}$$
 Dual feasibility

- 3. $[x_1, x_2] = [1, 0], \mu = -1 **Dual feasibility**$
- 4. $[x_1, x_2] = [-1, 0], \mu = -1 **Dual feasibility**$
- 5. $[x_1, x_2] = [0, 0], \mu = 0 **Stationarity condition**$

Figure 2.2: First Order Conditions inequality constraints visualized

2.1.4 Second Order Conditions, inequality constraints

Theorem 6: SOC theorem (KKT theorem).

Let $f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, $h \in C^2$, $g: \mathbb{R}^n \to \mathbb{R}^p$, $g \in C^2$. Let there be x, λ and μ , such that:

1.
$$\nabla_f(x) + \lambda^T \mathbf{D} h(x) + \mu^T \mathbf{D} g(x) = 0$$
, and

2. $\forall_{z \in T(x), z \neq 0}$ we have $z^T H_{L(x)} z > 0$

Then we call point x a minimum of f, related to h(x) = 0.

T(x) we call tangent space, i.e.: $T(x) = \{z \in \mathbb{R}^n : z^T \mathbf{D} h(x) = 0\}$. In a case where m = 1, we have $T(x) = \{z \in \mathbb{R}^n : z^T \nabla_h(x) = 0\}$