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Lecture 2: Analytical optimization with constraints
Daniel Kaszyński 02 November 2023 r.

2.1 Properties of gradient

We have already introduced the concept of the gradient of a function – which is a vector of partial derivatives.
Gradient will be quite often used as part of a lecture, which is why we should consider its properties.
As a remainder:

Definition 1: Gradient

Let f : D ⊂ Rn → R, x ∈ D. Through a gradient of function f , we call function ∇f (x) : Rn → Rn

at point x:

∇f (x) =

[
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

]

Remember that:

Relationship between Directional Derivative and Gradient? If the gradient of a function exists
∇f (x) at point x (which means that f is differentiable in x)

∇f (x) =

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
then directional derivative of a function f in direction of a vector h is equal to the dot product of the gradient
∇f and vector h.

Theorem 1: Gradient is the direction of the fastest growth.

Proof. Let |h| = 1, i.e. let it be a normalized vector. Then the growth rate of a function f at
point x in direction h is given by a directional derivative df

dh (x). Let us determine then a direction
h, which maximizes the growth rate of a function f , i.e. direction which maximizes the directional
derivative:

df

dh
(x) = ∇f (x)h = |∇f (x)||h|cos(∇f (x), h) = |∇f (x)|cos(∇f (x), h)

for |∇f (x)| ≥ 0 and cos(∇f (x), h) ∈ [−1, 1] the growth rate of f is the greatest when cos(∇f (x), h) =

1, which implies that h points in the same direction that ∇f (x) is. As a result h =
∇f (x)
|∇f (x)| .
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Theorem 2: Gradient is orthogonal to the level set of the function.

Proof. Let f : Rn → R, x∗ = (x∗
1, . . . , x

∗
n) and ∇f (x

∗) ̸= 0. Let r : R → Rn so that r(t0) = x∗.
Value of the function is constant for all points from a chosen level set (according to the definition)
and ∀t∈Rf(r(t)) = c. Then d

dt (f(r(t)) = ∇f (r(t))
dr
dt (t) = 0. In particular ∇f (r(t0))

dr
dt (t0) = 0.

Because dr
dt (t0) is a tangent space to the level set of a function f at x∗, it implies that ∇f (x

∗)
is orthogonal to the level set.

2.1.1 First Order Conditions, equality constraints

Theorem 3: Lagrange theorem, Lagrange multipliers.
Let f : D ⊂ Rn → R, f ∈ C1. If function f has an extremum at x related to h(x) = 0, where h : Rn → Rm,
h ∈ C1, at point x, then

∇f (x) + λTDh(x) = 0

For h : Rn → R.
∇f (x) + λ∇h(x) = 0

Example 1. Let f(x) = x2
1+x2

2, and [x1, x2] : h(x) = x2
1 + 2x2

2 − 1 = 0. Find the extremum of f(x)
related to h(x) = 1.

From First Order Conditions (FOC) we get:{
2x1 + λ2x1 = 0⇒ x1(1 + λ) = 0

2x2 + λ4x2 = 0⇒ x2(1 + 2λ) = 0

Which gives us 4 solutions:

1. [x1, x2] =
[
0, 1√

2

]
, λ = − 1

2

2. [x1, x2] =
[
0,− 1√

2

]
, λ = − 1

2

3. [x1, x2] = [1, 0], λ = −1

4. [x1, x2] = [−1, 0], λ = −1
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Figure 2.1: First Order Conditions equality constraints visualized

2.1.2 Second Order Conditions, equality constraints

Theorem 4: Second Order Conditions of Lagrange theorem.
Let f : D ⊂ Rn → R, h : Rn → Rm, h ∈ C2. Let there be x and λ such that:

1. ∇f (x) + λTDh(x) = 0, and

2. ∀z∈T (x),z ̸=0 we have zTHL(x)z > 0

Then by point x we call minimum of a function f , related to h(x) = 0. T (x) we call tangent space,
i.e.: T (x) = {z ∈ Rn : zTDh(x) = 0}. In a case when m = 1, we have T (x) = {z ∈ Rn : zT∇h(x) = 0}

Example 2. Lets consider 4 solutions that we have found from FOC:

1. [x1, x2] =
[
0, 1√

2

]
, λ = − 1

2

z : zT∇h(x) = [z1, z2][2x1, 4x2]
T = [z1, z2]

[
0,

4√
2

]
= 0

z10 + z2
4√
2
= 0⇒ z = [α, 0]
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[α, 0]THf ([x1, x2])[α, 0] = [α, 0]T
[

2 + 2λ 0
0 2 + 4λ

]
[α, 0] = [α, 0]T

[
1 0
0 0

]
[α, 0] = α2 > 0

2. [x1, x2] =
[
0,− 1√

2

]
, λ = − 1

2

3. [x1, x2] = [1, 0], λ = −1

z : zT∇h(x) = [z1, z2][2x1, 4x2]
T = [z1, z2] [1, 0] = 0

z11 + z20 = 0⇒ z = [0, α]

[0, α]THf ([x1, x2])[0, α] = [0, α]T
[

2 + 2λ 0
0 4 + λ

]
[0, α] = [0, α]T

[
0 0
0 −2

]
[0, α] = −2α2 < 0

4. [x1, x2] = [−1, 0], λ = −1

2.1.3 First Order Conditions, inequality constraints

Theorem 5: KKT (Karush-Kuhn-Tucker) conditions.
Let f : D ⊂ Rn → R, f ∈ C1 be an objective function, and let h : Rn → Rm, h ∈ C1 and g : Rn → Rp,
g ∈ C1 be the constraints. If x is an extremum then there exists a pair of λ = (λ1, . . . , λn) oraz µ =
(µ1, . . . , µn) such that:

1. Stationarity condition: ∇f (x) +
∑m

i=1 λi∇hi(x) +
∑p

i=1 µi∇gi(x) = 0

2. Primal feasibility: ∀i=1,...,mhi(x) = 0 and ∀i=1,...,pgi(x) ≤ 0

3. Dual feasibility: ∀i=1,...,pµi ≥ 0 ← for minimum

4. Complementary slackness: ∀i=1,...,pµigi(x) = 0

Example 3. f(x) = x2
1 + x2

2 constrained by [x1, x2] : g(x) = x2
1 + 2x2

2 − 1 ≤ 0

From FOC we have:
[2x1, 2x2] + µ[2x1, 4x2] = 0{

2x1 + µ2x1 = 0⇒ x1(1 + λ) = 0

2x2 + µ4x2 = 0⇒ x2(1 + 2λ) = 0

Which gives 4 solutions:

1. [x1, x2] =
[
0, 1√

2

]
, µ = − 1

2 **Dual feasibility**

2. [x1, x2] =
[
0,− 1√

2

]
, µ = − 1

2 **Dual feasibility**
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3. [x1, x2] = [1, 0], µ = −1 **Dual feasibility**

4. [x1, x2] = [−1, 0], µ = −1 **Dual feasibility**

5. [x1, x2] = [0, 0], µ = 0 **Stationarity condition**
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Figure 2.2: First Order Conditions inequality constraints visualized

2.1.4 Second Order Conditions, inequality constraints

Theorem 6: SOC theorem (KKT theorem).
Let f : D ⊂ Rn → R, h : Rn → Rm, h ∈ C2, g : Rn → Rp, g ∈ C2. Let there be x, λ and µ, such that:

1. ∇f (x) + λTDh(x) + µTDg(x) = 0, and

2. ∀z∈T (x),z ̸=0 we have zTHL(x)z > 0

Then we call point x a minimum of f , related to h(x) = 0.

T (x) we call tangent space, i.e.: T (x) = {z ∈ Rn : zTDh(x) = 0}. In a case where m = 1, we have
T (x) = {z ∈ Rn : zT∇h(x) = 0}
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