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Lecture 2: Analytical optimization with constraints
Daniel Kaszyniski 02 November 2023 r.

2.1 Properties of gradient

We have already introduced the concept of the gradient of a function — which is a vector of partial derivatives.
Gradient will be quite often used as part of a lecture, which is why we should consider its properties.
As a remainder:

Definition 1: Gradient

Let f: D C R® = R, 2 € D. Through a gradient of function f, we call function Vy(z) : R* — R”
at point z:

V() = [(f;"l(x), 552@),...,%(@}

Remember that:

Relationship between Directional Derivative and Gradient? If the gradient of a function exists
V¢(x) at point x (which means that f is differentiable in x)

0 0
Vi(x) = [(%fl”(%i]

then directional derivative of a function f in direction of a vector h is equal to the dot product of the gradient
V f and vector h.

Theorem 1: Gradient is the direction of the fastest growth.

Proof. Let |h| =1, i.e. let it be a normalized vector. Then the growth rate of a function f at
point z in direction A is given by a directional derivative % (2). Let us determine then a direction
h, which maximizes the growth rate of a function f, i.e. direction which maximizes the directional

derivative:

daf
o5 @) = Vi(@)h = |V (@)l[hleos(V s (2), h) = |V ()]cos(V(z), h)
for |V¢(z)| > 0and cos(Vs(x), h) € [—1, 1] the growth rate of f is the greatest when cos(Vy(x), h) =

1, which implies that h points in the same direction that V¢ (x) is. As a result h = ;iggl.
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Theorem 2: Gradient is orthogonal to the level set of the function.

Proof. Let f: R = R, z* = (z7,...,2}) and Vs(z*) # 0. Let r : R — R" so that r(ty) = z*.
Value of the function is constant for all points from a chosen level set (according to the definition)
and Vier f(r(t)) = c. Then 2 (f(r(t)) = Vy(r(t))%(t) = 0. In particular Vy(r(to)) % (to) = 0.

Because %(to) is a tangent space to the level set of a function f at z*, it implies that V¢ (z*)

is orthogonal to the level set. O

2.1.1  First Order Conditions, equality constraints

Theorem 3: Lagrange theorem, Lagrange multipliers.
Let f: D CR"® = R, f € CL. If function f has an extremum at x related to h(x) = 0, where h : R — R™,
h € C', at point x, then

Vi(z) + \'Dh(z) =0

For h : R™ = R.
Vi(z)+ AVi(z) =0
Example 1. Let f(x) = 23 +23, and [z1, 7o) : h(z) = 2% 4+ 223 — 1 = 0. Find the extremum of f(x)
related to h(z) = 1.
From First Order Conditions (FOC) we get:

201+ X221 =0=21(14+X) =0

Which gives us 4 solutions:
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Figure 2.1: First Order Conditions equality constraints visualized
2.1.2 Second Order Conditions, equality constraints
Theorem 4: Second Order Conditions of Lagrange theorem.

Let f:DCR” =R, h:R* = R™, he€ C?. Let there be x and X\ such that:

1. Vi(z) + ATDh(z) =0, and

2. Vier(a),220 we have zTHL(m)z >0

Then by point x we call minimum of a function f, related to h(x) = 0. T(x) we call tangent space,
ie.: T(x) = {z € R": 2TDh(z) = 0}. In a case when m = 1, we have T(x) = {z € R" : 2TV} (x) = 0}
Example 2. Lets consider 4 solutions that we have found from FOC:
L. [xlaxﬂ = |:Oa %}a A= _%

21 2TV(@) = [21, 22)[221, 422]T = [21, 20] [0, \jﬂ =0

4
210+ 20— =0=z = [, 0]
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.0y (v, a0 = o | 252 O o=l [ ) ] 0y =250

O =

2. [1‘1,1‘2] = [05_%}7 A= _%
3. [z1,m2) = [1,0], A= —1

2 2TV (2) = [21, 20)[221, 4a0]T = [21, 22] [1,0] = 0
2114+ 20=0=2z=[0,q]

0.0l Hy(fen pl0.0) = 0.0 | 252 0, el = | § 6 [0.0)= 20t <0

4. [Il,lfg] = [71,0], A=-1

2.1.3 First Order Conditions, inequality constraints

Theorem 5: KKT (Karush-Kuhn-Tucker) conditions.
Let f : D CR" = R, f € C! be an objective function, and let h : R* — R™, h € C* and g : R® — RP,
g € C! be the constraints. If x is an extremum then there exists a pair of A = (M\1,...,\n) oraz p =
(41, .- fn) Such that:

1. Stationarity condition: Vy(z) + > " AV, (o) + >ty #iV(x) =0

2. Primal feasibility: V=1 . mhi(z) =0 and V=1, pg:(x) <0

3. Dual feasibility: Vi— . ,p; > 0 < for minimum

4. Complementary slackness: V=1 pu;gi(z) =0

Example 3. f(z) = 23 + 23 constrained by [x1,72] : g(z) = 27 + 223 —1 <0
From FOC we have:
[221,2x9] + p[2x1,422] =0
2x1 +p2x1 =0=x1(1+ ) =0
2xo + pdxs = 0= z2(1 +2X) =0

Which gives 4 solutions:

1. [xy,29] = [O, %], w= f% **Dual feasibility™**

2. [x1,20) = [0, —%}, = —% **Dual feasibility**
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3. [x1,22] =[1,0], p = —1 **Dual feasibility**

4. [z1,29] = [-1,0], p = —1 **Dual feasibility**
5. [x1,22] = [0,0], u = 0 **Stationarity condition**
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Figure 2.2: First Order Conditions inequality constraints visualized

2.1.4 Second Order Conditions, inequality constraints

Theorem 6: SOC theorem (KKT theorem).
Let f:DCR* =R, h:R* > R™, he C?, g: R* - RP, g € C%. Let there be x, A and u, such that:

1. Vi(z) + \TDh(x) + pTDg(x) = 0, and
2. VeT(z),2£0 We have zTHL(x)z >0
Then we call point © a minimum of f, related to h(x) = 0.

T(x) we call tangent space, i.e.: T(x) = {z € R" : 2TDh(z) = 0}. In a case where m = 1, we have
T(z) = {z e R*: 2TV} (z) = 0}
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