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Sensitivity analysis, supported by computer hardware and soft-
ware, can easily overwhelm an analyst or decision maker with
data. However, this data can be organized in a readily under-
standable way using well-designed graphs. Two graphical tech-
niques, spiderplots and tornado diagrams, are commonly used
respectively by engineering economists and decision analysts.
Their advantages are complementary. Management scientists
should often use both to convey their results to decision makers
succinctly and clearly. The simpler tornado diagram can sum-
marize the total impact of many independent variables. An in-
dividual spiderplot displays more information about a smaller
number of variables. This includes the limits for each inde-
pendent variable, the impact of each on the dependent out-
come, and the amount of change required to reach a break-
even point.

uantitative models rely on data that
is rarely exact. Current values must
be estimated, and forecasting is required

for future events, prices, needs, and oppor-

tunities. Even when deterministic models
are better than stochastic ones, the uncer-

tainty must be evaluated through sensitiv-
ity analysis. Often this is best done graphi-
cally. This sensitivity analysis may be used
(1) to make better decisions, (2) to decide
which data estimates should be refined be-
fore making a decision, or (3) to focus
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managerial attention on the most critical
clements during implementation.
Sensitivity analysis can be defined as ex-
amining the impact of reasonable changes
in base-case assumptions, I will discuss
methods that can be applied to models
with a single, dependent outcome and a
number of independent variables. The
question is the sensitivity of the dependent
outcome relative to changes in each inde-
pendent variable. This approach can be
applied to many management science
models since the single dependent out-
come can be virtually any measure of the
quality of the outcome. Examples include
present worth, number of lives saved, mar-
ket share in five years, and additive
weighted multi-criteria functions.

Two disciplines within management sci-
ence rely on specific graphic forms to con-
vey the results of relative sensitivity analy-
sis, Decision analysts rely on the tornado
diagram [Howard 1988, Clemen 1991, and
McNamee and Celona 1990] or on soft-
ware that automatically generates tornado
diagrams, and engineering economists rely
on the spiderplot [Thuesen and Fabrycky
1989; and Eschenbach 1989]. Analysts in

Variable

Lower Limit*

both fields and in many other fields have
used both to study sensitivity analysis.
Eschenbach and McKeague [1989] suggest
that typical teaching and practice of engi-
neering economists with respect to sensi-
tivity analysis could be improved substan-
tially. Other useful references on the
graphical display of analytical data include
Canada and Sullivan [1977] and Tufte
[1983].

In doing a sensitivity analysis, the ana-
lyst should consider: (1) the reasonable
limits of change for each independent vari-
able, (2) the unit impact of these changes
on the present worth or other measure of
quality, (3) the maximum impact of each
independent variable on the outcome, and
(4) the amount of change required for each
independent variable whose curve crosses
over a break-even line.

Example Problem and Relative
Sensitivity Analysis

Table 1 shows base-case values and de-
fines the terms for a simple economic
model of a prospective new product. For
simplicity, I will assume that all cash flows
except the first cost are end-of-year. Then,
a single, deterministic, dependent outcome,

Base-Case Value Upper Limit"

FirstCost 90% $120,000 150%
Salvage 0% $20,000 150%
N (horizon or life) 50% 12 years 200%
i (discount rate) 60% 10% 200%
0&M (annual cost) 80% $6,000 125%
Revenue (annual) 60% $55,000 125%
NNoRev {# years without revenue) 0% 1 300%
FracComp (fraction of revenue lost

to competition) 0% 2 200%

* Lower and upper limits are expressed as a percentage of the base-case values.
Table 1: A hypothetical set of project parameters defines an example where present worth is an

appropriate measure of project acceptability.
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lated as follows:

the present worth is calcu

PW = —FirstCost + Salvage -

(P/F, 1, Ny~ O&M-(P/A, i, N)

+ Revenue - (1 ~ FracComp)- (1)
(P/A, 1, N — NNoRev)-

{(P/F, 1, NNoRev).

(P/A, 1, Nyand (P/F, 1, N
tively the umfmrm periodic and the single

) are respec-

payment present worth factors, where i is
the interest rate, N is the number of peri-
ods, P occurs at time 0, A occurs at the end
of periods 1 through N, and F occurs at the
end of period N.

Columns 2 and 4 within Table 1 show
the first step of sensitivity analysis, which

is to define the limits of reasonable change,
both plus and minus (or both upper and
lower) for each independent variable.
These limits are likely to differ for each
variable, and they may be asymmetric
since the worst case is often more extreme
than the best.

Tornado diagrams and spiderplots are
based on the equation(s) of the model (Eq.
(1) for the example) and on relative sensi-
tivity analysis. The base-case outcome (PW
for the example) is the deterministic result.
This defines the vertical axis of the tornado
diagram and the center of the spiderplot.
One at a time each variable is set to its up-

per and lower limits and the base-case out-
come is calculated, while the other vari-
ables remain at their base-case values. This
completes the computations for the tor-
nado diagram. For the spiderplot, interme-
diate values must also be computed.

This example also illustrates how inde-

pendence is used in sensitivity analysis for
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spiderplots and tornado diagrams. The
number of years of no revenue and the
fraction of the revenues lost to competition
are assumed to be independent. However,
delays that increased the number of years
of no revenue would also tend to increase
the fraction lost to competition. Dependen-
cies like these require simulation or the
construction of scenarios.
The Information in a Tornado Diagram
or a Spiderplot

To construct a tornado diagram, Figure
1, one makes the independent variable
whose limits have the widest range for the
dependent outcome the top bar. Then one
arrays the other variables in descending
order of effect on the dependent outcome.
The limits on these variables could be ex-
pressed as percent change, years, or dol-
lars, A tornado diagram quickly highlights
those variables to which the outcome is
most sensitive. Such a diagram can include
many variables, and it can also be con-
structed as a horizontal bar chart
[Eschenbach 1989, Eschenbach and
McKeague 1989].

To construct a spiderplot, Figure 2, one
plots a curve for each variable on a single
x-y plot. To avoid clutter, one must limit a

Revenue
N

i

FracComp
NNoRev
FirstCost
O&M

Salvage

$0 $50

$200

s100 | $150
Present Worth ($1,000s}
Figure 1: The tornado diagram for the exam-
ple ranks the revenue variable as having the
most impact on the present worth (salvage
value has the least).
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Figure 2: The spiderplot shows the relative change in present worth for reasonable changes in
the independent variables. It also shows the upper and lower limits of expected changes in the

independent variables.

single plot to about seven variables; four or
five is better. For consistency, the x-axis
measures each independent variable as a
percentage of its base case. If an indepen-
dent variable’s base case is 0, then a sec-
ond x-axis must be added to the plot, using
the units of that variable, for example,
dollars.

The spiderplot’s greater complexity can
convey more information (Table 2). A tor-
nado diagram shows only (1) the outcome
values (y-coordinates) at the ends of each
spiderplot curve. The x-coordinates of
these endpoints in the spiderplot curves
depict (2) the limits for each independent
variable. The slopes of the spiderplot
curves depict (3) the relative change in the
outcome for a unit change in the indepen-
dent variable. The shape of the spiderplot

curve also shows (4) whether linear or
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nonlinear relationships are present. (Non-
linearity can complicate interpreting tor-
nado diagrams.) Tornado diagrams can be
(5) easier to construct and can be con-
structed for more variables.

Common Errors

Because of their simplicity, tornado dia-
grams are quite easy to do correctly. How-
ever, a careless user might wrongly con-
clude that decreases in each independent
variable are matched to decreases in the
outcome. In the example shown in Table 1,
decreases in first cost increase present
worth.

Spiderplots are often drawn incorrectly
[Eschenbach 1989]. Analysts should begin
by defining reasonable limits for the inde-
pendent variables, but they often use plus
and minus the same arbitrary percentage.
For example, zero to 200 percent might be
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Tornado Diagram Spiderplot
Limits on each independent variable Number not graph Yes
Relative impact delta y/delta x No Yes
Total impact on outcome Yes Yes
Degree of change required for For outcome, not for independent Yes
Crossover variables
Total number of independent Nearly unlimited 7 or less

variables

Table 2: Tornado diagrams and spiderplots are designed to convey different information.

used for all variables. If this error is also
common with tornado diagrams, it is less
obvious.

This error is serious, because it extends
each spiderplot curve to the left and right
graph boundaries. On the tornado dia-

v

gram, these “extended” y-coordinates
would be plotted. The tornado diagram
and the spiderplot would then (1) show
the wrong extreme values for the outcome
and (2) exaggerate the uncertainty for
some independent variables. The tornado
diagram would also (3) order the indepen-
dent variables incorrectly.

A third error is to ignore uncertainty in
the limits. Just as a positive present worth
cannot determine a decision but must in-
stead be weighed against noneconomic
factors and the model's approximations; so
too, must a break-even point be inter-
preted as a region of economic indiffer-
ence. The apparent precision of numerical
comparisons violates the imprecision, un-
certainty, and intuitive feel of sensitivity
analysis.

Linear versus Nonlinear Shapes and the
Implications for Control

In spiderplots, most variables show (1)
increasing or decreasing returns to scale
(the slope’s absolute value is increasing or
decreasing), or (2) a straight line or propor-
tional relationship to the outcome. In engi-
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neering economy, first costs, periodic pay-
ments or receipts, and other parameters
found outside of the compound interest
factors are usually related linearly to the
present worth. Variables—such as the dis-
count rate, inflation and other geometric
gradients, a machine’s life, or the prob-
lem’s horizon—are inside the conversion
factors, and they exhibit a decreasing
returns-to-scale relationship to present
worth.

In my experience, almost all indepen-
dent variables show either a straight line
or a concave or convex curved relationship
to the dependent outcome. However, lin-
earity or the lack of it is much more than
an academic question. It affects the ability
of the analyst or decision maker to respond
to the uncertainty shown in the tornado
diagram or spiderplot.

The total impact of the uncertainty
linked to an independent variable has two
sources—the upper and lower limits of
that variable and the integrated slope of
those changes on the outcome. Arguably
the functional form of that relationship is
likely to be uncontrollable. However, the
limits are likely to be far more “controlla-
ble.” In some cases, the analyst can obtain
additional information. In other cases,
managerial attention might better control
key variables during implementation. Since
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the tornado diagram shows only changes
in the dependent outcome and not in the
independent variables; it suggests an incor-
rect implicit assumption—that each vari-
able has the same proportional payoff for
petter control and the same opportunities
for control,

Nonlinearity causes extra problems for
tornado diagrams. In the example shown
in Figure 2, a 10-percent change at the
high end of project life or discount rate
values has relatively little impact. This is
apparent in the spiderplot, but the tornado
diagram (Figure 1) seems to implicitly as-
sume that a 10 percent reduction in either
limit of an independent variable will
change the outcome proportionately.

Sensitivity analysis is
examining the impact of
reasonable changes in base-
case assumptions.

I the example shown in Figure 1, only
the curves for revenue, project life, and
discount rate approach the break-even
value of present worth which equals $0. If
a curve crosses the break-even line, then it
is helpful to describe the percentage in-
crease or decrease in that variable needed
to reach the break-even point,

Conclusion

Both tornado diagrams and spiderplots
are useful in assessing the impact of uncer-
tainty. This sensitivity analysis can im-
prove decision making, point out needed
refinements in data estimates, and focus
managerial attention. But to use them most
n;*ffemwr»ly, the analyst must use both
graphs and must consider how best to
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“draft” them. Depending on the software
available and the individual's experience,
the analyst might find either easier to do—
but the key question is which is right for
the information and the audience.

The tornado diagram highlights those
variables meriting further attention and
summarizes the total impact of each vari-
able. However, only the spiderplot can
show which of the high-impact variables
are likely to be amenable to control
through specific managerial action or
through further data gathering. Only the
spiderplot shows all of the following: (1)
the reasonable limits of change for each in-
dependent variable, (2) the unit impact of
these changes on the dependent outcome,
(3) the maximum impact of each variable
on the dependent outcome, and (4) the
amount of change required to cross-over
the break-even line. The tornado diagram
shows only (3) the total impact, but it can
do so for many more variables.
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